Predicate Abstraction for
Relaxed Memory Models

Andreil Dan Yuri Meshman
Martin Vechev Eran Yahav

ETH Zurich Technion

Sequential Consistency

We expect programs to have
“Interleaving semantics”

“The result of any execution is the same as if
the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor
appear in this sequence in the order
specified by its program.”

— Leslie Lamport, 1973

Dekker’s Algorithm for Mutual Exclusion

Thread 0O: Thread 1:
flag[0] := true flag[l] := true
while flag[l] = true { while flag[0] = true {
i1f turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section
Memory Model: Intel's x86 (one of the strongest models)

Correct Dekker Algorithm

Thread 0O: Thread 1:
flag[0] := true flag[l] := true
fence fence
while flag[l] = true { while flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true
fence fence
} }
} }
// critical section // critical section
turn := 1 turn := 0
flag[0] := false flagl[l] := false

Specification: mutual exclusion over critical section
Memory Model: Intel's x86 (one of the strongest models)

Goal — Automatic Verification of
Concurrent Programs on RMM

Concurrent
Program

Yes
Spec | CUPEX
No

Memory
Model

Little work for infinite state verification

Technique: Predicate Abstraction

» Successful for sequential program analysis:

- Original by Graf and Saidi (CAV' 96)
- Used by Microsoft's SLAM for device drivers

« Some work for SC concurrent programs:
- Kroening et al. (CAV' 11)
- Gupta et al. (CAV' 11)

How can we apply Predicate Abstraction to
relaxed memory model verification ?

Classic Predicate abstraction

Predicate Abstraction for SC

QogramD Preds V

Predicate Abstraction

I
<Boo|ean Program B>

l Verified

[3-valued Model Checker]<
Counter
example

Key High-Level Idea: adapt proof

The hypothesis is that a program running on a
relaxed memory model (RMM) has much in
common with the sequentially consistent (SC)
program and does not diverge arbitrarily.

Step 1: verify program on sequential consistency

Step 2: adapt the predicates used in SC proof to
verity program under RMM

Our Approach: 3 steps

* Obtain SC proof: prove program P under SC using
some predicates

« Obtain Py, : encode RMM effects into the program
P and get an SC program Py without RMM effects !

e Extrapolate predicates Preds), for Py, from SC
proof

Step 1: Verify program under SC
(using a known technique)

* Find a set of predicates Preds
» Build the boolean program B(P, Preds)

» Verify B satisfies property S under sequential
consistency, that is: B(P, Preds) Esc S

10

Step 2: Encode RMM effects into
program :

X
— X X PSO

 Choose a bound k for store buffers (sound)

* Encode store buffers as program variables

» Shared variable X gets encoded as:
- Xent 1S @ counter for the buffer

- X4, ,Xk for each buffer element

11

Encode program: example for k = 1

X — shared variable

load t = X

store X =1t

if (Xent == 0)
load t = X;
if (Xent == 1)

t=Xg;
if (Xent == K)
“overflow”
Xent T
if (Xent == 1)

X1 =1

12

Step 3: Predicate Extrapolation:
discover new predicates for RMM

Key ldea: adapt the predicates used in the SC
proof for the proof under RMM.

- buffer size (precision: enumerate all possible values)
- buffer elements (learned from SC predicates)

13

Predicate Extrapolation Example

« V¥V X € shared variables, Vi = 0..k:

— (Xent =) tracks buffer size

- (Xj=Xi.1),i#0 for flush actions

« YV p € Predsgc, where pis (X <Y)
- (X <Y)
- (X <))

14

Our approach so far

Predicate Extrapolation

Program Memory
P Model M

[Reduction]4 >[Extrapolate]
e

[Predicate Abstraction]

Coolean Program BD

l Verified
{ 3-valued Model Checker Counter
example

This approach works for some programs
but not for all programs we tried.

Why ?
Standard
predicate

abstraction
machinery

15

The Problem

Building boolean program is exponential in the
number of predicates. For some benchmarks,
we cannot even build the boolean program !

For example, the process for Bakery continues
after 10 hours...

What is the core problem ?

16

Problem: abstract transformer

Literals q; = pj or g = ~p; p; € Preds
Cubes(Preds)={gq A ... A qj}

|Cubes(Preds)| = 3/Fre%
Y st € Statements

V p; € Preds

f = wp(p;, st)
V ¢ € Cubes(Preds)
fc=f [//SMT call
add c to the transformer

17

Key ldea

Reuse more information from the SC proof:
In addition to input predicates, extrapolate from

the actual cubes that are used in the boolean
program!

18

Cube Extrapolation Example

Cube in the SC Potential cubes for
boolean program B: RMM boolean program:
(X>=0) A (X<Y) > (X1>=0) A (X4 <Y)

(X >= 0) A (X, <Y)
(X >=0) A (X < Y4)

(X>=0) A (X < Y)

19

New abstract transformers

Cubes'(Predsy) = { CubeExtrapolation(B) }

|Cubes'(Predsy)| << |Cubes(Predsy,)|

Y st € Statements
V pi S PredS

f = wp(pj, st)
V ¢ € Cubes'(Predsy)

fc=f [/SMT call
Add c to the transformer

20

Complete approach

Cube Extrapolation

Predicate Extrapolation

Program Memory
Model M

[Reduction]< Extrapolate

@

[Predicate Abstraction]

Coolean Program BD
Verified

{ 3-valued Model Checker]4 Counter
example

Boolean
Program B
[Extract cubes]
Cubes
from B

21

Implementation

 Build the boolean program

— bounded cube size search and cone of influence
- Yices SMT solver

 Use a three-valued model checker

- merge states after updates
— partial concretization of assume conditions

22

Results: Predicate Extrapolation

Build Boolean Program Model check
algorithm |[memory |# input| # SMT| time|# cubes|cube |# states|memory | time
model | preds|calls (K)|(sec)| used| size (K)| (MB)|(sec)
SC 7 0.7 0.1 0 14 6 1
Dekker |PSO 28 71| 16 0 1 437 151 26
TSO 26 60| 14 0 433 147, 19
SC 7 0.6/ 0.1 2 7 3 1
Peterson |[PSO 28 441 10 2 2 120 44 8
TSO 26 36 8 2 231 81| 11
SC 8 2| 05 5 0.6 1| 0.6
ABP PSO 15 200 4 5| 2 2 3 1
TSO 17 23 5 5 2 3 1
SC 20 16| 3.3 1 12 6 2
Szymanski|PSO 47 302 67 1 2| 2,838 978| 165
TSO 51 405 95 | 3,251 1,128] 199

23

Results: Cube Extrapolation

Build Boolean Program Model check
algorithm|memory [method |# inpuff# input] # SMT| time(# cubes)cube |# states|memory| time
model preds] cubes|calls (K)| (sec)| used| size (K)| (MB)|(sec)
SC Trad 7 - 20 5 50 1 2 1
PE -| 5,747(1,475 412 1 4 1
Queue P50 CE 15 99 98| 17 99 4 11 6 2
PE -| 11,133(2,778 412 12 4 1
150 CE ! 99 163 31 99 12 7 2
SC Trad 15 - 1,552| 355 161 20 8 2
PE - -| T/O - - - -
Bakery P50 CE 38 422y 9,018(1,773 381 4 979 375| 104
PE - -| T/O - - - -
50 CE 3 422 7,048(1,386 383 730 285| 121
SC Trad 11 - 218| 51 134 2 2 1
PSO PE 5 - -| T/O - - - -
Ticket CE 622] 15,644|2,163 380 4 193 123| 40
PE - -| T/O - - - -
TSO 48
CE 622 6,941|1,518 582 71 67| 545

Cube extrapolation can be used to verify the simpler programs,

but is not needed, as PE works.

24

Related Work

. Atig et al. (CAV' 11)
- code-to-code translation

- bounds on store age or context switches
— applied for detecting bugs, no verification

* Abdulla et al. (SAS' 12)

- Iterative predicate abstraction
- rely only on CEGAR refinement
- not reusing existing proofs

25

Conclusion

 New predicates discovered by extrapolating
the predicates used in verifying the program
under sequential consistency work

 New cubes discovered by extrapolating SC
cubes are precise enough to satisfy the
specification

26

Future work

e Other relaxed models

- hardware, software

 When is proof extrapolation possible?

- theoretical guarantees

 Refinement techniques
- buffer size
— counter example guided
- enforce predicate set

27

Thank youl!

28

Store Buffer Based Models

e Ex;: PSO
store fence flush
flag[0]
g — - 8es—{

ag E—— -)

Thread 0 = N
t S \

_ 0 - aN—

Main
Memory

flagl0] PR,

g o DR BEE—
ag I — p— :

Thread 1 = ey
turn P — PR N

	Slide 1
	Sequential Consistency
	Dekker’s Algorithm for Mutual Exclusion
	Slide 4
	Goal
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

