
1

Predicate Abstraction for
Relaxed Memory Models

Andrei Dan
Martin Vechev

ETH Zurich

Yuri Meshman
Eran Yahav

Technion

Sequential Consistency

“The result of any execution is the same as if
the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor
appear in this sequence in the order
specified by its program.”
 – Leslie Lamport, 1973

2

We expect programs to have
“interleaving semantics”

Dekker’s Algorithm for Mutual Exclusion

Specification: mutual exclusion over critical section
Memory Model: Intel's x86 (one of the strongest models)

Thread 0:
flag[0] := true
while flag[1] = true {
 if turn ≠ 0 {
 flag[0] := false
 while turn ≠ 0 { }
 flag[0] := true
 }
}
// critical section
turn := 1
flag[0] := false

Thread 1:
flag[1] := true
while flag[0] = true {
 if turn ≠ 1 {
 flag[1] := false
 while turn ≠ 1 { }
 flag[1] := true
 }
}
// critical section
turn := 0
flag[1] := false

 Correct Dekker Algorithm

Specification: mutual exclusion over critical section
Memory Model: Intel's x86 (one of the strongest models)

Thread 0:
flag[0] := true
fence
while flag[1] = true {
 if turn ≠ 0 {
 flag[0] := false
 while turn ≠ 0 { }
 flag[0] := true

 fence
 }
}
// critical section
turn := 1
flag[0] := false

Thread 1:
flag[1] := true
fence
while flag[0] = true {
 if turn ≠ 1 {
 flag[1] := false
 while turn ≠ 1 { }
 flag[1] := true

 fence
 }
}
// critical section
turn := 0
flag[1] := false

Goal – Automatic Verification of
 Concurrent Programs on RMM

Concurrent
Program

Spec

Memory
Model

CUPEX

Little work for infinite state verification

Yes

No

6

Technique: Predicate Abstraction

● Successful for sequential program analysis:
– Original by Graf and Saidi (CAV' 96)

– Used by Microsoft's SLAM for device drivers

● Some work for SC concurrent programs:
– Kroening et al. (CAV' 11)

– Gupta et al. (CAV' 11)

How can we apply Predicate Abstraction to
relaxed memory model verification ?

7

Classic Predicate abstraction

8

Key High-Level Idea: adapt proof

The hypothesis is that a program running on a
relaxed memory model (RMM) has much in
common with the sequentially consistent (SC)
program and does not diverge arbitrarily.

Step 1: verify program on sequential consistency

Step 2: adapt the predicates used in SC proof to
verify program under RMM

9

Our Approach: 3 steps

● Obtain SC proof: prove program P under SC using
some predicates

● Obtain PM : encode RMM effects into the program
P and get an SC program PM without RMM effects !

● Extrapolate predicates PredsM for PM from SC
proof

10

Step 1: Verify program under SC
(using a known technique)

● Find a set of predicates Preds

● Build the boolean program B(P, Preds)

● Verify B satisfies property S under sequential
consistency, that is: B(P, Preds) ⊧SC S

11

Step 2: Encode RMM effects into
program

● Choose a bound k for store buffers (sound)

● Encode store buffers as program variables

● Shared variable X gets encoded as:

– Xcnt is a counter for the buffer

– X1, …. ,Xk for each buffer element

X
1

X
2 ...

X
k

PSO

12

Encode program: example for k = 1

load t = X

store X = t if (Xcnt == k)
 “overflow”
Xcnt ++;
if (Xcnt == 1)
 X1 = t;

if (Xcnt == 0)
 load t = X;
if (Xcnt == 1)
 t = X1;

X – shared variable

13

Step 3: Predicate Extrapolation:
discover new predicates for RMM

Key Idea: adapt the predicates used in the SC
proof for the proof under RMM.
– buffer size (precision: enumerate all possible values)

– buffer elements (learned from SC predicates)

14

● ∀ X shared∊ variables, ∀ i = 0..k:

– (Xcnt = i) tracks buffer size

– (Xi = Xi-1), i ≠ 0 for flush actions

● ∀ p Preds∊ SC, where p is “(X < Y)”:

– (Xi < Y)

– (X < Yi)

Predicate Extrapolation Example

15

Our approach so far

Standard
predicate
abstraction
machinery

This approach works for some programs
but not for all programs we tried.

Why ?

16

The Problem

Building boolean program is exponential in the
number of predicates. For some benchmarks,
we cannot even build the boolean program !

For example, the process for Bakery continues
after 10 hours...

 What is the core problem ?

17

Problem: abstract transformer

 ∀ st Statements∊
 ∀ pi Preds∊
f = wp(pi, st)

 ∀ c ∊ Cubes(Preds)
if c f⇒ //SMT call

add c to the transformer

Literals qi = pi or qi = ¬pi, pi Preds ∊
Cubes(Preds) = {q1 … q∧ ∧ j}

|Cubes(Preds)| = 3|Preds|

18

Key Idea

Reuse more information from the SC proof:

In addition to input predicates, extrapolate from
the actual cubes that are used in the boolean
program!

19

Cube Extrapolation Example

Cube in the SC
boolean program B:

(X >= 0) (X < Y)∧ (X1 >= 0) (∧ X1 < Y)

(X >= 0) (X < ∧ Y1)

(Xk >= 0) (∧ Xk < Y)

(X >= 0) (X < ∧ Yk)

...

...

Potential cubes for
RMM boolean program:

20

New abstract transformers

 ∀ st Statements∊
 ∀ pi Preds∊
f = wp(pi, st)

 ∀ c ∊ Cubes'(PredsM)
if c f⇒ //SMT call

Add c to the transformer

Cubes(Preds) = {q1 … q∧ ∧ j }

Cubes'(PredsM) = { CubeExtrapolation(B) }

|Cubes'(PredsM)| << |Cubes(PredsM)|

21

Complete approach

22

Implementation

● Build the boolean program
– bounded cube size search and cone of influence

– Yices SMT solver

● Use a three-valued model checker
– merge states after updates

– partial concretization of assume conditions

23

Results: Predicate Extrapolation

24

Results: Cube Extrapolation

Cube extrapolation can be used to verify the simpler programs,
but is not needed, as PE works.

25

Related Work

● Atig et al. (CAV' 11)
– code-to-code translation

– bounds on store age or context switches

– applied for detecting bugs, no verification

● Abdulla et al. (SAS' 12)
– iterative predicate abstraction

– rely only on CEGAR refinement

– not reusing existing proofs

26

Conclusion

● New predicates discovered by extrapolating
the predicates used in verifying the program
under sequential consistency work

● New cubes discovered by extrapolating SC
cubes are precise enough to satisfy the
specification

27

Future work

● Other relaxed models
– hardware, software

● When is proof extrapolation possible?
– theoretical guarantees

● Refinement techniques
– buffer size

– counter example guided

– enforce predicate set

28

Thank you!

29

Store Buffer Based Models

● Ex: PSO

...

...

...

...

...

...

Thread 0

Thread 1

Main
Memory

flag[0]

store fence flush

load

flag[1]

turn

flag[0]

flag[1]

turn

	Slide 1
	Sequential Consistency
	Dekker’s Algorithm for Mutual Exclusion
	Slide 4
	Goal
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

