
Partial-Coherence Abstractions for Relaxed Memory Models

Michael Kuperstein
Technion, Haifa, Israel

mkuper@cs.technion.ac.il

Martin Vechev
IBM T.J. Watson Research Center

mtvechev@us.ibm.com

Eran Yahav ∗

Technion, Haifa, Israel
yahave@cs.technion.ac.il

Abstract
We present an approach for automatic verification and fence infer-
ence in concurrent programs running under relaxed memory mod-
els. Verification under relaxed memory models is a hard problem.
Given a finite state program and a safety specification, verifying
that the program satisfies the specification under a sufficiently re-
laxed memory model is undecidable. For stronger models, the prob-
lem is decidable but has non-primitive recursive complexity.

In this paper, we focus on models that have store-buffer based
semantics, e.g., SPARC TSO and PSO. We use abstract interpre-
tation to provide an effective verification procedure for programs
running under this type of models. Our main contribution is a fam-
ily of novel partial-coherence abstractions, specialized for relaxed
memory models, which partially preserve information required for
memory coherence and consistency. We use our abstractions to au-
tomatically verify programs under relaxed memory models. In ad-
dition, when a program violates its specification but can be fixed by
adding fences, our approach can automatically infer a correct fence
placement that is optimal under the abstraction. We implemented
our approach in a tool called BLENDER and applied it to verify and
infer fences in several concurrent algorithms.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords Concurrency, Synthesis, Abstract Interpretation, Re-
laxed Memory Models, Weak Memory Models

1. Introduction
In the early 1990s, features like out-of-order execution and multi-
level caches became common in commodity CPU architectures.
These features drastically improved performance in a programmer-
transparent fashion: their introduction did not change the semantics
of existing (sequential) programs. With the advent of symmetric
multiprocessing and multi-core CPUs, preserving the illusion of
in-order memory operations became more difficult. One possible
approach is to keep the illusion—known as sequential consistency
[20] in a multi-processor setting—and sacrifice performance. The
other is to define architectural relaxed memory models (RMMs)
that allow improved performance at the cost of weaker semantics.

∗Deloro Fellow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

A relaxed memory model allows observable executions that can-
not occur if instructions running on different processors are sim-
ply interleaved. As a result, a program that runs correctly on the
sequentially-consistent model may violate its specification when
running on a relaxed memory model. In practice, relaxed mem-
ory models are used by all major CPU designs, among them In-
tel x86 [33], SPARC [36] and PowerPC [16]. To enforce order
between memory operations, these architectures provide special
memory fence instructions. Informally, inserting a fence instruction
prohibits certain re-orderings, thus restricting the set of relaxed ex-
ecutions. For example, a fence inserted between two store instruc-
tions will force these two stores to appear to execute in-order. It
is the programmer’s (or the compiler’s) responsibility to correctly
place fences.

Program Verification and Fence Inference To place fences, the
programmer must first be able to know whether the program is
correct given a fence placement - in other words, she needs to
be able to verify the program. However, verification of concur-
rent programs is not an easy task even under the sequentially con-
sistent memory model. Relaxed memory models make reasoning
about program correctness, both manually and automatically, even
harder, as they require reasoning about non sequentially-consistent
executions. Even for finite-state programs, automatic verification
under relaxed memory models is a hard problem. Given a finite
state program and a safety specification, verifying that the program
satisfies a specification under a sufficiently relaxed memory model
(e.g., SPARC RMO) is undecidable. For somewhat stronger mem-
ory models (e.g., SPARC TSO, PSO), the problem is decidable but
has non-primitive recursive complexity [2].

Even given a verification procedure, inserting fences is still non-
trivial. On the one hand, since each fence incurs a heavy perfor-
mance penalty, the programmer should not insert fences unless they
are strictly required for correctness. On the other hand, missing a
fence may lead to subtle concurrency bugs.

Store Buffers Relaxed memory models allow two basic relax-
ations of sequential consistency: memory operations may be re-
ordered with respect to each other, and stores may be executed non-
atomically across processors [1]. Some relaxations can be naturally
modeled using store buffers [25], emulating the actual hardware
implementation. In store-buffer based semantics, one or more FIFO
queues (“store buffers”) are associated with each processor. Mem-
ory writes are split into two phases: a “store” phase and a “flush”
phase. The store phase adds a value into a local store buffer, and
the flush phase propagates the stored value to main memory (or
directly to other processors).

The basic hurdle for automatic verification under those models
is that store buffers can grow without a bound, even for programs
that are otherwise finite state. To enable automatic program verifi-
cation and fence inference on relaxed memory models, we need a
technique that can represent those buffers in a bounded way.

Existing Approaches Existing approaches either employ under-
approximations such as bounded checking [5] and testing [8], or
side-step the problem by focusing on a restricted class of pro-
grams. For instance, [32] considers data-race free programs, and
[28] focuses on programs free from a particular (“triangular”) type
of data races. Bounded checking and testing are valuable, but can-
not establish that the program satisfies its specification on all exe-
cutions. When used for automatic fence inference, bounded tech-
niques (e.g., [5, 18]) might miss required fences. Targeting only
race-free programs simplifies the problem by allowing considera-
tion of only sequentially-consistent executions. However, it is of-
ten unrealistic, as many concurrent programs contain “benign data
races” [27]. For example, some mutual exclusion algorithms, such
as Dekker’s algorithm, contain benign triangular data races. Thus
we cannot apply the results of [28], even if we restrict attention
only to the TSO model.

In contrast to these approaches, our technique over-approximates
possible program behaviors and is able to verify programs execut-
ing under RMMs. When used for fence inference, our technique is
guaranteed to produce all required fences.

Our Approach We present a technique for automatic verifica-
tion and fence inference in finite-state programs running on relaxed
memory models. Based on abstract interpretation [9], we introduce
a family of partial-coherence abstractions for store buffers. Our
abstractions provide a bounded representation for (potentially) un-
bounded store buffers. We use the term abstract memory model to
refer to a memory model that uses an abstract structure to represent
store buffers. Our approach provides a range of abstractions with
varying precision, enabling successive abstraction refinements of a
given abstract memory model MA.

Given a program P , a specification S and an abstract mem-
ory model MA, the question we are trying to answer is whether
P |=MA S, that is, whether the program satisfies the specification
under the given abstract memory model. When P 6|=MA S, it is
possible to:
• Refine the abstraction: refineMA and try to find a more precise

memory model MA′ under which P |=MA′ S.
• Restrict the program: find a program P ′ obtained from P by

adding memory fences that restrict the permitted re-orderings
during execution, such that P ′ |=MA S.

In this work, we focus on restricting the program by inserting
fences, and show how using different abstract memory models
affects the precision of the resulting fence placement. We focus
on a family of abstractions for the TSO and PSO memory models,
as those models are implemented in common hardware (e.g., Intel
x86 [29], SPARC) and have simple concrete operational semantics.

Partial-Coherence Abstractions The challenge for abstractions
of store buffers is to provide a bounded representation that (par-
tially) preserves the following three key properties (described in
more detail in Section 2):
• Intra-process memory coherence: a process should only see its

own most recently written value to a variable.
• Inter-process memory coherence: a process should observe val-

ues written by another process in the order they were written.
• Fence semantics: a fence executed by a process writes to mem-

ory the most recent value written by the process.
The main idea behind our abstractions is to preserve only a limited
amount of order inherent in a store buffer. In particular, our abstract
buffer representation preserves information about: i) the most re-
cent store to a buffer, and ii) the order between a bounded number
of the oldest stores in the buffer. While inter-process coherence is
only partially preserved, we show this choice is particularly effec-
tive for verifying concurrent algorithms running on relaxed mem-
ory models (see Section 4 for details).

Process 0:

1 while(true)
2 {
3 store ent0 = true;
4 store turn = 1;
5 do
6 {
7 load e = ent1;
8 load t = turn;
9 }

10 while(e==true && t==1);
11 //Critical Section
12 store ent0 = false;
13 }

Process 1:

1 while(true)
2 {
3 store ent1 = true;
4 store turn = 0;
5 do
6 {
7 load e = ent0;
8 load t = turn;
9 }

10 while(e==true && t==0);
11 //Critical Section
12 store ent1 = false;
13 }

Figure 1. Peterson’s Algorithm with explicit memory operations

Process 0:

1 while(true)
2 {
3 store ent0 = true;
4 fence;
5 store turn = 1;
6 fence;
7 do
8 {
9 load e = ent1;

10 load t = turn;
11 }
12 while(e==true && t==1);
13 //Critical Section
14 store ent0 = false;
15 }

Process 1:

1 while(true)
2 {
3 store ent1 = true;
4 fence;
5 store turn = 0;
6 fence;
7 do
8 {
9 load e = ent0;

10 load t = turn;
11 }
12 while(e==true && t==0);
13 //Critical Section
14 store ent1 = false;
15 }

Figure 2. Peterson’s Algorithm with fences that guarantee mutual
exclusion under the PSO memory model. Fences were automati-
cally inferred by our approach.

1.1 Main Contributions
The main contributions of this paper are as follows:

• We describe a family of parametric abstractions that enable
automatic verification of safety properties for programs under
relaxed memory models.

• When a program violates its specification but can be fixed by
adding fences, our approach can automatically infer a correct
fence placement that is optimal under the given abstraction.

• We have implemented our approach in a tool called BLENDER

and applied it for verification and fence inference of several
challenging concurrent algorithms.

2. Overview
2.1 Motivating Example - Peterson’s Algorithm
Fig. 1 shows the code of Peterson’s mutual exclusion algorithm [31].
In this algorithm, two processes repeatedly enter and exit a criti-
cal section. We would like to show that the algorithm satisfies the
mutual exclusion property: it is impossible for both processes to
be in the critical section simultaneously. Indeed, Peterson’s algo-
rithm satisfies mutual exclusion under a sequentially-consistent
(SC) memory model. Unfortunately, under relaxed memory mod-
els, such as “Partial Store Order” (PSO), the algorithm does not
satisfy the property. To see why, we first give a brief explanation of
the PSO memory model.

The Partial Store Order (PSO) Memory Model PSO is one of
three memory consistency models defined for the SPARC architec-
ture [36]. In PSO, a store to some memory location l may become

…P0

Main
Memory

…P1

…

…

…

…

ent0
ent1
turn

ent0
ent1
turn

Figure 3. Store buffers for Peterson’s algorithm of Fig. 1 under the
PSO memory model. Note that buffers can grow without a bound.

visible to other processes only after the storing process executes
later loads and stores to different memory locations.

The PSO model can be formalized operationally by associating
with each processor a set of FIFO queues (store buffers), one for
each variable, as shown in Fig. 3. The informal semantics of store
buffers for PSO can be summarized as follows:
• Store buffering: A store issued by process pi to variable x is

written into the store buffer associated with (pi, x).
• Store forwarding: A load by pj from y is performed from its

local store buffer (associated with (pj , y)) if it is not empty, or
from the global memory otherwise.

• Flushing: The oldest value stored in the buffer may be written
to the global memory and removed from the buffer at non-
deterministic points in the execution.

The Problem: Delayed Stores Under the PSO model, the follow-
ing execution of Peterson’s algorithm is possible:
• p0 runs alone until line 11, however the store to ent0 in line 3

is written only to the buffer but not flushed.
• p1 runs. Since the store to ent0 is delayed, it is not visible to p1.
p1 enters the critical section, and mutual exclusion is violated.

Peterson’s algorithm relies on ordering of loads and stores for
synchronization. It requires p0’s store to ent0 to be visible to p1

before p0 loads ent1, and symmetrically on p1’s store to ent1
to be visible to p0 before p1 loads ent0. When the underlying
memory model does not preserve this order, Peterson’s algorithm,
as it appears in Fig. 1, does not satisfy mutual exclusion.

Restoring Order with Fences To allow programmer control over
ordering in relaxed memory models, processors provide special
memory fence instructions. Intuitively, the semantics of a fence are
that memory operations issued before the fence must take global
effect before memory operations after the fence may execute. In
general, there are different kinds of fences (e.g., store-load, store-
store) that impose order between different types of operations. A
store-load fence executed by a processor forces all stores issued
by that processor to complete before any new loads by the same
processor start. In this paper we assume the model provides the
strongest type of fence (a “full memory barrier”) that restricts
reordering of any memory operations. In Fig. 2 the fences in lines
4 and 6 prevent the erroneous execution above (and other possible
related bugs) by forcing the stores in lines 3 and 5 to take global
effect before the storing process can advance. Unfortunately, fence
instructions are very costly in terms of CPU cycles. Thus, we wish
to place fences only when they are required for correctness.

Efficient Fence Placement The programmer’s challenge is, then,
in finding a fence placement that permits as much re-ordering as
possible but does not allow the specification to be violated. To
find an efficient placement of fences, we need to observe what re-
orderings lead to violation of the specification, and find a minimal

placement (often, there are multiple non-comparable solutions) that
prevents these re-orderings. When the program is finite-state, we
can enumerate all reachable program states, identify error states
and find fences that prevent execution from reaching those states
(c.f [18]). Unfortunately, Peterson’s algorithm without fences run-
ning on PSO has an infinite state-space. The length of the store
buffers generated by the program is not bounded: running p0 alone
for t iterations of the outer loop without flushing will generate a
buffer of length 2t for the ent0 variable.

2.2 Abstraction

To handle programs that have an unbounded state-space, we intro-
duce a family of parametric abstractions that provide a conservative
bounded representation. Our abstractions induce a hierarchy of (ab-
stract) memory models with varying degrees of consistency. Before
describing the abstraction, we note that concrete PSO semantics
preserve the following 3 properties.
1. Intra-process coherence: If a process stores several values to

shared variable x, and then performs a load from x, it should
not see any value it has itself stored except the most recent one.

2. Inter-process coherence: A process pi should not observe values
written to shared variable x by process pj in an order different
from the order in which they were written.

3. Fence semantics: If a process pi executes a fence when its buffer
for variable x is non-empty, the value of x visible to other
processes immediately after the fence should be the most recent
value pi wrote.

The properties above are phrased in terms of PSO semantics (store
buffer per variable), but it is easy to formulate similar properties
for other memory models. For example, for TSO, the only change
is that inter-process coherence is global and not per variable. In that
case, the desired property may be called inter-process consistency.

Partial-Coherence Abstraction The challenge in designing an
abstraction for store-buffer based memory models lies in preserving
properties 1-3 (to the greatest possible extent) using a bounded rep-
resentation of each buffer. To preserve intra-process coherence, our
abstractions maintain recency information per variable. To preserve
inter-process coherence, our abstractions preserve order between
stores up to some constant bound (a parameter of our abstraction),
and treat the remaining stores as an unordered set. While property
2 is not fully preserved, this partial coherence is often sufficient
in practice. The intuition is that if a process stores many (possibly
different) values to the same shared variable without an intervening
fence, the order in which they become visible is not important for
the correctness of the algorithm.

Fig. 4 shows a schematic view of a partial-coherence abstraction
of PSO store buffers for the Peterson algorithm of Fig. 1. In this
abstraction, a store buffer is represented by treating items after a
bounded head (of length k) of the buffer as a set, and additionally
recording the most recently stored value for each buffer.

In Section 3, we give a formal concrete semantics for the PSO
memory model and in Section 4 present our abstract semantics. Us-
ing this abstraction with the fence inference algorithm of Section 5,
our approach automatically infers the fences shown in Fig. 2. In
Section 6, we show that we can use different parameters to achieve
more scalable abstractions and still get reasonable results. We also
show that there is a tradeoff between the precision of the abstraction
and the quality of the inferred fences. Finer abstractions lead to suc-
cessful inference with fewer fences, while restricting the program
by adding fences enables verification with a coarser abstraction.
In particular, our partially disjunctive abstraction (see Section 4.3)
produces non-trivial fence placements for programs for which the
fully disjunctive abstraction leads to state-space explosion.

P0

Main
Memory

P1

ent0

ent1

turn

Recent
value

Bounded
length k

Unordered
elements

ent0

ent1

turn

Figure 4. A partial-coherence abstraction of PSO store buffers for
the Peterson algorithm of Fig. 1. In this abstraction, a store buffer
is given a bounded representation by representing items after a
bounded head of the buffer as a set, and recording the recently
stored value for each buffer.

3. Operational Semantics for Relaxed Memory
Models

In this section, we present an operational semantics for the PSO
memory model. It is easy to give similar semantics for other con-
ceptually close models such as TSO, NTSO and NPSO [24].

3.1 Preliminaries

Sequence Notation Given a finite domain D, we use Seqn(D)
to denote the set of all sequences of length n over D, Seq≤n(D)
to denote the set of all sequences shorter than or equal in length
to n over D, Seq(D) to denote the set of all finite sequences over
D, |w| to denote the length of a sequence w and ε to denote an
empty sequence. We denote the concatenation of two sequences
w1, w2 by w1 · w2. For k > |w|, we define head(w, k) as the
subsequence consisting of the first k items in w and tail(w, k) as
the subsequence consisting of the last k items in w. For 0 < k ≤
|w| we define head(w, k) = tail(w, k) = w and for k ≤ 0,
head(w, k) = tail(w, k) = ε. We define last(w) to be the only
element in tail(w, 1), or ⊥ if tail(w, 1) = ε . We define Set(w)
to be the set of elements in the sequence w. Finally, we define
UTail(w, k) as Set(tail(w, |w| − k)) — the set of all but the
first k elements of w.

Program Syntax We consider programs written in a simple
assembly-like programming language with the operations load,
store, branch, CAS (compare and swap) and sequential and paral-
lel composition. Our language also contains a full fence operation.
We assume that instructions in our programs are labeled, and the
labels used in the code of process are unique. We denote the set of
program labels by Labs.

Program Semantics A transition system for a program P under
a memory model M is a tuple 〈σ0,Σ, T 〉, where Σ is a set of
states, σ0 ∈ Σ is the initial state of P , and T is a set of transitions
σ

t−→ σ′. A transition σ t−→ σ′ is in T if σ, σ′ ∈ Σ, and execution
from state σ according to the semantics of M can result in state
σ′. A trace π of the program is a (possibly infinite) sequence of
transitions σ0 → σ1 → σ2 → ..., where for all i, σi −→ σi+1 ∈
T . In all of our semantics, a single transition will correspond to
action taken by a single process. Thus we will associate a transition
t with that process, and denote the associated process proc(t). A

transition tp is enabled for process p in state σ if p = proc(tp) and

there exists some σ2 such that σ
tp−→ σ2 ∈ T .

Throughout the paper we present the semantics in a standard
operational style as a set of inference rules. To simplify presenta-
tion, when updating mappings, we use M ′(x) = v as a shorthand
for M ′ = M [x 7→ v]. Components not updated in the inference
rule are assumed to be left unchanged.

3.2 Store Buffers

In our memory model semantics we follow [2, 7, 25] and assume
that processes execute their programs sequentially, and any vio-
lations of sequential consistency happen within the memory sub-
system. This is in contrast to other formulations that combine the
memory and processor effects (e.g., [30, 35, 41]).

Our formulation is based on store-buffers, and our concrete
semantics uses the following semantic domains:
• G\ ∈ SV ar where SV ar = Shared → D. Valuation of shared

variables from the domain D.
• L\ ∈ Env where Env = PID → (Local → D). Valuation

of local variables for each process.
• pc\ ∈ PC where PC = PID → Labs. Program counters.
• B\ ∈ SB where SB differs between different memory models,

and is intentionally left unspecified at this stage. A representa-
tion of the store buffers.

Here D represents the domain from which the variables in the
program take values.

A state σ = 〈G\σ, L\σ, pc\σ, B\σ〉 ∈ C\ is a tuple where C\ =
SV ar × Env × PC × SB. We use next(pc(p)) to mean the
instruction following pc(p) in the program code. Furthermore, we
will omit the p when the referenced process is clear from the
context.

3.3 Partial Store Order (PSO) Model

Concrete Semantics For PSO, a separate FIFO store buffer is
maintained for every (process, variable) pair. That is, formally,
SB = PID → (Shared → Seq(D))

Semantics 1 Operational semantics defining transition from
〈G,L, pc,B〉 to 〈G′, L′, pc′, B′〉 under PSO.

stmt(pc) = load x, r B(x) = ε G(x) = v

L
′
(r) = v pc

′
= next(pc)

(LOAD-G)

stmt(pc) = load x, r B(x) = b · v
L

′
(r) = v pc

′
= next(pc)

(LOAD-B)

stmt(pc) = store r, x B(x) = b L(r) = v

B
′
(x) = b · v pc

′
= next(pc)

(STORE)

B(x) = v · b
B

′
(x) = b G

′
(x) = v

(FLUSH)

stmt(pc) = fence ∀x.B(x) = ε

pc
′
= next(pc)

(FENCE)

stmt(pc) = cas x, r, s, q
G(x) = L(r) L(s) = v B(x) = ε

G
′
(x) = v L

′
(q) = true pc

′
= next(pc)

(CAS-T)

stmt(pc) = cas x, r, s, q G(x) 6= L(r) B(x) = ε

L
′
(q) = false pc

′
= next(pc)

(CAS-F)

Sem. 1 shows the concrete operational semantics of the PSO
model. Each inference rule applies only to a single process. Thus,
the p parameter is consistently omitted in all inference rules pre-
sented. However it is always implicitly existentially quantified. For

example, the premise of the LOAD-G rule should be read as

∃p.stmt(pc(p)) = load x, r ∧B(p)(x) = ε ∧G(x) = v

The semantics show the role played by the store buffer for stor-
ing and loading values to/from main memory (STORE, LOAD-G,
LOAD-B, FLUSH). The FENCE and CAS rules have memory fence
semantics. These two rules are enabled only when the buffer of the
executing process is empty. This means that when a process en-
counters, e.g., a fence instruction, it cannot continue execution
until all of the buffers are flushed. For simplicity we omit the se-
mantics of instructions that do not access shared memory (regis-
ter operations, branches) and leave expression evaluation implicit.
That is, L(r) is extended to the evaluation of complex expressions
r. Such a complex expression may only depend on local variables
— expression evaluation may not cause a memory access.

The premise of all rules except FLUSH depends on the program
counter of the process. They are enabled only if pc(p) points to an
instruction of a specific type. The FLUSH rule, on the other hand,
is always enabled for a given buffer B(p)(x) if that buffer is not
empty. This captures the fact that flushes can be performed non-
deterministically at any stage of program execution.

3.4 Total Store Order (TSO) Model
The TSO concrete state differs from the PSO concrete state only in
the definition of the store buffer. For TSO, there is only a single,
buffer for all variables of a process. That is, SB = PID →
Seq(Shared ×D). The semantics must also be updated to take the
difference into account. The flavor of the required changes can be
seen in the TSO version of the LOAD-G rule in Sem. 2. Note that
as the difference between PSO and TSO lies purely in the grouping
of shared variables into store buffers, we can treat them as special
cases of the same general model.

Semantics 2 LOAD-G rule for concrete TSO

stmt(pc) = load x, r ∀(y, d) ∈ B.y 6= x G(x) = v

L
′
(r) = v pc

′
= next(pc)

(LOAD-G)

4. Partial-Coherence Abstractions
In this section, we present a family of abstract memory models that
abstract the concrete semantics of Section 3. The presentation fo-
cuses on abstractions of the SPARC PSO model, but the adapta-
tion to TSO is straight-forward. The main idea behind our partial-
coherence abstractions is to vary how much of the order between
memory operations we preserve. The ability to vary the precision
is useful as different algorithms can be verified with different lev-
els of precision and cost. When the abstraction is used for fence
inference, Section 6 shows that there exists a trade-off between the
precision of the analysis (which affects the state-space size) and the
quality of inferred fences.

4.1 Abstract Domain
The abstract domain is designed to represent store buffers in a
bounded way by losing order information between items past a
certain bound. To achieve this goal, we represent a concrete buffer
B\ by a tuple 〈l, S,H〉. The l ∈ D element records the latest (most
recent) value that was written into the buffer. H ∈ Seq≤k(D)
records the k oldest values in the buffer (in the original order) if
those are known. S ⊆ D records a set of values that were written
into the buffer, abstracting away the order between them, as well as
the number of times each elements appears in the buffer. Formally,
we define, for a buffer B\:

βB(B\) = 〈last(B\), UTail(B\, k), head(B\, k)〉

An abstract state σ is a tuple 〈G,L, pc,B〉 where G,L and pc
are defined as in the concrete semantics.B maps a (process, shared
variable) pair to the tuple 〈l, S,H〉 defined earlier. To simplify
notation, we will use short-hands such as lp(x) to represent the l
element of B(p)(x). As in the concrete semantics, we will often
omit the p. We denote by A the set of all abstract states.

To define the abstract domain, we define several order relations.
The order vb is defined on 〈l, S,H〉 tuples:

〈l1, S1, H1〉 vb 〈l2, S2, H2〉
if l1 = l2 and:

∃t.H2 = head(H1, t) ∧ S2 = S1 ∪ UTail(H1, t)

Intuitively, 〈l2, S2, H2〉 is produced from 〈l1, S1, H1〉 by removing
part of the tail end of H1 and adding all the removed elements into
the set. We then use vb to define a partial order vs on abstract
states σ1 = 〈G1, L1, pc1, B1〉, σ2 = 〈G2, L2, pc2, B2〉: σ1 vs σ2

if the two states coincide on G,L, pc and:

∀p, x.B1(p)(x) vb B2(p)(x)

Finally, we define our abstract domain A ⊆ 2A as the set of all
antichains of A. That is:

A = {Σ ⊆ A | ∀σ, ρ ∈ Σ.σ 6= ρ⇒ σ 6vs ρ}
The order relation v: A× A is defined as:

Σ1 v Σ2 iff ∀σ1 ∈ Σ1.∃σ2 ∈ Σ2.σ1 vs σ2

The join operator over A, implied by the above order, is:

Σ1 t Σ2 = {σ ∈ Σ1 ∪ Σ2 | ∀ρ ∈ (Σ1 ∪ Σ2).σ 6= ρ⇒ σ 6v ρ}

We define the abstraction function α : 2C
\

→ A using an
extraction function β : C\ → A:

α(Σ) =
⊔
σ∈Σ

{β(σ)}

β(σ) = 〈G\σ, L\σ, pc\σ, β̂B〉
β̂B = λp, x.βB(B\σ(p)(x))

The intuition behind this abstraction is shown in Fig. 3. That
figure can, however, be slightly misleading: it is important to note
the entire concrete buffer is covered by the concatenation of values
from S toH . Specifically, l does not need to be concatenated to the
end. Thus if S = ∅, then l is always equal to the last element of
H and is in fact redundant. If S 6= ∅, then l ∈ S is an invariant.
A more precise representation of the abstraction is given in Fig. 5.
Fig. 5(a) shows the case in which the concrete buffer is longer than
k and Fig. 5(b) shows the case in which the concrete buffer is of
length at most k.

The Importance of Recency Our abstraction uses l to record
the most recent value stored for a variable. This is motivated by
the need to preserve the intra-process coherence requirement that
a process storing several values to a shared variable x, and then
performing a load from x, should not see any value it has itself
stored except the most recent one. This is a very basic property and
abstractions that do not preserve this information will fail to verify
many reasonable programs.

Partial Inter-Process Coherence The abstract domain only par-
tially preserves the inter-process coherence requirement. For ex-
ample, suppose processor p stores the values a and then b to the
variable x. The resulting concrete buffer B\p(x) is ”ab”. Taking
k = 0, the abstract buffer is B = βB(”ab”) = 〈a, {a, b}, ε〉. Note
that, for example, βB(”ab”) = βB(”aba”). So given the abstract
buffer B we must allow a different process q to observe the val-
ues being written in the opposite order. Worse, since, for example,

HeadSet

Most Recent Value

(a) The length of the buffer is higher than k

Head

Most Recent Value

(b) The length of the buffer is at most k

Figure 5. Abstraction of a single buffer

βB(”ab”) = βB(”abab”) it is possible for process q to observe
the stores in the opposite order, and for a third process r to observe
them in the original order.

This behavior occurs only if a process performs more than k
stores to the same memory location without an intervening fence
or CAS. As long as at most k stores to a memory location are
performed without an intervening fence, the abstract domain is
fully precise.

Abstract Domain Design One of our observations is that in a
correct program a process rarely performs an unbounded number of
stores to a memory location without a fence. When a process does
perform a large number of stores to a memory location without a
fence, it means that the order in which these stores are performed is
not important for program correctness. Following this observation,
our abstraction is designed to: (i) preserve the order between a
small number of stores to the same memory location; (ii) abstract
away the order in long sequences of stores but preserve the stored
values, such that values cannot appear “out of thin air”.

Given that programmers do not normally think in terms of
unordered stores, we expect many correct programs to only utilize
very short buffers. This is validated by our results (c.f Section 6)
— correct versions of the benchmark algorithms could be verified
using k = 1. However, there are examples of correct programs
where buffers may become very long. One such example is the
Sieve of Eratosthenes implementation in [3], which only requires
that values do not appear out of thin air.

Furthermore, we wish our verification procedure to remain
sound for arbitrary programs. This is impossible using bounded
buffers, as it is trivial to construct an incorrect program which
would appear to be correct using bounded buffers of some given
length k. Similarly, when the abstraction is used for fence infer-
ence, we wish to always infer a correct placement. This is impossi-
ble if we simply bound the buffer length.

Domain of Variables Throughout this paper we do not specify
the domain D from which local and shared variables take values.
However, the domain is in fact critically important to the effective-
ness of the abstraction. Let d be the number of values a shared vari-
able may potentially take during the execution of a program. Then
the number of possible H values for that variable is dk, and the
number of possible S values is 2d. Since in the worst case, d = |D|,
we may expect an increase in state-space size (w.r.t state-space un-
der SC) that is exponential in |D|. The examples we used for our
experiments do not suffer from this problem, as the variables only
take a small number of values in any given execution. However, for

different programs this may become a real issue. Note, however,
that our abstraction can be trivially composed with value abstrac-
tions (e.g., sign abstraction, parity abstraction, interval abstraction
[10]). Instead of using the concrete domain D, we can replace it
with an abstract value domain D]. We can then store those abstract
values in the buffer and perform local operations on values accord-
ing to the semantics dictated by D], retaining a sound abstraction.

4.2 Abstract Semantics

Sem. 3 shows the abstract semantics with partial coherence pa-
rameterized by k. In the figure, we use the shorthand emp(x)

def
=

H(x) = ε ∧ S(x) = ∅.

Loading Values and Recency In the concrete semantics, a pro-
cess may load the latest value it wrote by reading its own store
buffer. Correspondingly, in the abstract semantics, the rule LOAD-B
reads the most recent value recorded in l. Had we not recorded the
most recent value l that a process wrote, a process p that performs
a load when Sp(x) 6= ∅ would have to conservatively explore all
possible values in the set Sp(x). The rule LOAD-G is similar to
the concrete semantics: when the buffer is known to be empty, the
value is loaded from global store.

Storing Values In the abstract semantics, store is split into two
cases STORE-H and STORE-S, based on whether the size of the
buffer H(x) has reached the bound k. As long as |H(x)| < k and
S(x) = ∅, the contents of the buffer are known precisely. Thus,
similarly to the concrete semantics, the effect of a store follows
STORE-H, adding the value to the tail of the buffer H(x) and
updating the most recent value l(x). When |H(x)| = k, the size of
the buffer H has been exceeded and no more values can be stored
in H . Therefore, the new value is stored in the (unordered) set of
values S(x) (as shown in the rule STORE-S) and the most recent
value l(x) is updated accordingly. When S(x) 6= ∅ we have lost
the information on the precise number of elements on the buffer,
and thus are also forced to keep updating the set.

Flushing Values In the abstract semantics, flush is split into
three cases: FLUSH-H, FLUSH-SN and FLUSH-SD. When we
have H(x) 6= ε then FLUSH-H behaves as the FLUSH rule in the
concrete semantics: it selects the oldest element in H(x), writes
it to G(x) and updates H(x). However, when H(x) = ε and
S(x) 6= ∅, any of the values in S(x) become possible candidates
for flushing (since S(x) is unordered, we do not know which value
is the oldest one). The rules FLUSH-SD (flush from set, destructive)
and FLUSH-SN (flush from set, non-destructive) then only differ on
whether the value selected to be flushed is removed from S(x) or
kept in it. This is required since we do not know how many times
every value appears in the buffer. Thus, in the concrete domain,
FLUSH-SD of a value v represents a flush of the last occurrence of
v in the buffer. In contrast, FLUSH-SN represents the situation in
which more instances of v remain.

We improve the precision of the analysis by disabling the
FLUSH-SD rule when we know that the resulting abstract states
do not represent any possible concrete states and will only intro-
duce imprecision. In particular, if v = l(x) and S(x) 6= {v},
FLUSH-SD need not fire. If we apply the concrete FLUSH rule
to any concretization of such a state, the value v will stay in the
(concrete) buffer, while if we flush v from the abstract state using
FLUSH-SD, it will remove v from the abstract buffer, leading to
abstract states that could not arise in the concrete semantics.

Example: Motivating Recency and Order Next, we illustrate via
an example why maintaining recency and order is important for ver-
ification and inference. Consider a naive set abstraction for the store
buffers, and a version of Peterson’s algorithm with fences shown
in Fig. 2 (in Section 2). Under standard concrete semantics of PSO,

Semantics 3 Abstract operational semantics defining transition
from 〈G,L, pc,B〉 to 〈G′, L′, pc′, B〉

stmt(pc) = load x, r emp(x) v = G(x)

L
′
(r) = v pc

′
= next(pc)

(LOAD-G)

stmt(pc) = load x, r ¬emp(x) v = l(x)

L
′
(r) = v pc

′
= next(pc)

(LOAD-B)

stmt(pc) = store r, x
S(x) = ∅ H(x) = h |h| < k L(r) = v

H
′
(x) = h · v l

′
(x) = v pc

′
= next(pc)

(STORE-H)

stmt(pc) = store r, x
S(x) = s s 6= ∅ ∨ |H(x)| = k L(r) = v

S
′
(x) = s ∪ {v} l

′
(x) = v pc

′
= next(pc)

(STORE-S)

H(x) = v · h
H

′
(x) = h G

′
(x) = v

(FLUSH-H)

H(x) = ε v ∈ S(x)
G

′
(x) = v

(FLUSH-SN)

H(x) = ε v ∈ S(x) ¬(v = l(x) ∧ S(x) 6= {v})
G

′
(x) = v S

′
(x) = S(x) \ v

(FLUSH-SD)

stmt(pc) = fence ∀x.emp(x)
pc

′
= next(pc)

(FENCE)

stmt(pc) = cas x, r, s, q
emp(x) L(r) = G(x) L(s) = v

G
′
(x) = v L

′
(q) = true pc

′
= next(pc)

(CAS-T)

stmt(pc) = cas x, r, s, q emp(x) L(r) 6= G(x)

L
′
(q) = false pc

′
= next(pc)

(CAS-F)

those fences guarantee that it is impossible for both processes to be
concurrently executing line 13. Let us consider an abstract memory
model where order and recency are not maintained, that is, we only
maintain Sp(x) but without maintaining lp(x) and Hp(x). Then,
we cannot show that the algorithm is correct. Consider the follow-
ing execution:
1. Initially both processes start with empty buffers, and ent0 =
ent1 = turn = 0.

2. Process 0 runs through one iteration of the outer loop (executes
lines 1-14 inclusively), without performing a flush after line 14.

3. Process 0 then tries to enter the critical section again and
executes lines 1-3 inclusively. At this stage, Sp0(ent0) =
{true, false}.

4. Two flush actions are performed on Sp0(ent0), first flushing
true and then false. At this point G(ent0) = false.

5. Process 0 completes entering the critical section.
6. Process 1 loads ent0 from global store and since ent0 is false

process 1 also enters the critical section.
The above example would not have been possible had we kept
either: i) ordering information via Hp(ent0) for at least two values
(i.e., k = 2) or ii) recency information via lp(ent0). In the first
case, the order in which {true, false} are flushed would have
been consistent with the order in which the values were written: we
would have first flushed false and then true. In the second case,
the fence in line 4 would have forced fully flushing Sp0(ent0),
resulting in writing out the most recent value (i.e., G(ent0) =
true). While in this case we could have used either lp(ent0) or
Hp(ent0) with k = 2, in other examples both of these refinements
with respect to a set are required.

4.3 A Partially Disjunctive Abstraction for Store Buffers
The abstraction of Section 4.1 distinguishes two abstract buffers
B1 = 〈l1, S1, H1〉, B2 = 〈l2, S2, H2〉 even when they differ
only on the contents of their unordered sets S1 6= S2. This leads
to distinctions between abstract states that are often more precise
than necessary. We observe that a more efficient abstraction can
be obtained without a significant sacrifice in precision by merging
such states. In Section 6, we show that combining such states leads
to a more scalable abstraction, while keeping a sufficient level of
precision. The one distinction that we do wish to preserve regarding
the S component is the difference between an empty set and a
non-empty set, as many of the rules in Sem. 3 distinguish between
these two cases. To capture this, we change the definition of vb as
follows: The order vτb is defined on 〈l, S,H〉 tuples.

〈l1, S1, H1〉 vτb 〈l2, S2, H2〉
if l1 = l2 and one of the two following conditions holds:

(1) H1 = H2 = ε ∧ S1 = S2 = ∅

(2) S1 6= ∅ ∧ ∃t.H2 = head(H1, t) ∧ S2 ⊇ S1 ∪ UTail(H1, t)

The orders vτs and vτ are then defined exactly as before but
with respect to vτb instead of vb. ατ is also defined as before, but
using

⊔τ instead of
⊔

. Note that this small change in the formalism
drastically changes the intuitive meaning of the set S. Let B =
〈l, S, ε〉 be an abstract buffer, and B\ a concrete buffer such that
βB(B\) vτb B. In the fully-disjunctive abstraction, this implies
that Set(B\) = S. This means that a value v was in S if and
only if it appeared at least once in B\. In the partially-disjunctive
abstraction, this is no longer true. Consider the concrete buffer ”a”.
Assuming k = 0, βB(”a”) = 〈a, {a}, ε〉 vb 〈a, {a, b}, ε〉. If a
value appears at least once in B\ then it is necessarily in S, but the
converse does not hold.

The new abstraction also implies a change to the abstract trans-
former. In the fully disjunctive abstraction, flushes from S were
split into two cases: FLUSH-SD to represent flushing the last in-
stance of a value from the buffer, and FLUSH-SN to represent an
instance that is not the last one. The case split for the partially dis-
junctive abstraction is slightly different. The new flush semantics
are shown in Sem. 4. The rule FLUSH-NE covers the case in which
a flush leaves S non-empty, while FLUSH-E represents flushing
the only remaining element of the concretization of the abstract
buffer. Note that it’s possible for both types of flush rules to be
enabled for the same buffer.

Semantics 4 Partially-disjunctive flush semantics

H(x) = ε v ∈ S(x)
G

′
(x) = v

(FLUSH-NE)

H(x) = ε S(x) 6= ∅
G

′
(x) = l(x) S

′
(x) = ∅

(FLUSH-E)

5. Fence Inference
In this section, we introduce a new technique for inferring mem-
ory fences under store-buffer based abstract memory models. For
our algorithm, we follow the same general recipe as outlined in
[40]: (i) Construct (a possibly abstract) transition system and find
the reachable error states. (ii) Construct a boolean formula that de-
scribes how traces leading to those error states can be avoided.
(iii) Implement satisfying assignments of the formula using syn-
tactic constructs.

The main challenge in implementing this general recipe is in
defining which transitions may be avoided, and how they can be

avoided syntactically. Next, we present the definitions that are ap-
propriate for each of our semantics: concrete, fully-disjunctive and
partially-disjunctive. We also show an example demonstrating the
interplay between the precision of the abstraction and the quality of
inferred fences.

5.1 Recoverability of Sequential Consistency

Before we introduce the details of the inference algorithm, we note
that the problem always has a trivial (inefficient) solution under
concrete memory models. However, for some abstract memory
models, the problem no longer has a solution. We would like to
restrict attention to abstractions in which the existence of a solution
is guaranteed. Consider a program P that satisfies its specification
S under the sequentially consistent memory model, P |=SC S, but
violates it under a weaker memory model M , P 6|=M S. We say
thatM is SC-Recoverable (SCR) when for any such P there exists a
programP ′ obtained from P by adding fences such thatP ′ |=M S.
For SC-Recoverable memory models, when P |=SC S, the trivial
solution in which fences are added after every memory store in
P always exists. This property might seem trivial, however it is
easy to design seemingly reasonable abstract models for which it
does not hold. For instance, as demonstrated in Section 6, a partial-
coherence abstraction with recency and k = 0 does not satisfy the
SCR property.

For the partial coherence abstractions of Section 4, k ≥ 1
guarantees SC-Recoverability. If we place a fence immediately
after every store instruction, then i) |H| can never grow above
1 so stores cannot become visible out of order and ii) the store
cannot be observed by the process itself before it is flushed. In
effect this makes the store and flush operations atomic, reducing the
program’s behaviors to those possible under sequential consistency.

5.2 Fence Inference under Concrete Semantics

Buffers of Labeled Stores The semantics given in Section 3 do
not preserve enough information about program execution to en-
able fence inference. Using those semantics, it is not possible to
determine that a given memory operation was delayed by exam-
ining only the source state and the transition associated with the
operation. Therefore, we instrument the concrete semantics with
additional information about the instruction that stored each value.
To achieve this, for a process p and variable x, we extend the store
buffer Bp(x) ∈ Seq(Labs × D) to be a sequence of pairs 〈l, v〉.
For every value stored we also record the label of the program in-
struction that stored the value.

Avoiding Error States Let P be a program, and 〈σ0,Σ, T 〉 be
the program’s transition system. Every transition t ∈ T that is not
a flush transition is associated with a instruction in the code that
caused the transition. We denote by lt the label of this instruction.
Our goal is to construct a program P ′ by inserting fences into P
such that the state-space of P ′ does not contain any error states.
To “remove” a state from the state-space, we must prohibit all
program traces that contain it. The question then becomes “how
can a program trace be prohibited?”

The intuition behind the recipe of [40] is that program traces can
be classified as either avoidable and unavoidable. The classification
is performed according to the syntactic device we have to eliminate
traces. In our setting, the syntactic device used to prohibit traces is a
memory fence. If a trace π contains a store transition σi

tp−→ σi+1

by process p which is not immediately followed by a flush of the
stored value, we can prohibit π by placing a fence immediately
after the store. This means a trace is unavoidable if and only if
every store is immediately followed by a flush.We can refine the
concept of an avoidable trace and talk about avoidable transitions.
A transition tp performed by process p is avoidable if it is a memory

operation (store, load or CAS), and some store buffer associated
with p is non-empty.

Formally, let t be the transition σ t−→ τ . Let v be a value written
by the instruction at label lv such that 〈l, v〉 appears in some buffer
Bσ,p(x). Then t is avoidable, and can be avoided by placing fences
on all program paths between lv and lt, forcing the value v to be
flushed before lt is reached. We formalize this by defining ordering
constraints: we say an ordering constraint [lv ≺ lt] is enforced if
a fence is placed on all program paths between lv and lt. We say
the constraint is violated by a transition if lt is executed while a
value stored by lv is in the buffer. A constraint is violated by a trace
if it is violated by one of its transition. Note that if a constraint
is enforced by a fence, it cannot be violated by any transition.
This implies a trace π of P cannot appear in P ′ if at least one
of the constraints it violates is enforced in P ′. This fact gives us
a complete characterization of how a state can be removed from
the state-space: by enforcing at least one constraint that is violated
by each trace leading to that state. We call this characterization the
avoid formula of a state.

A direct implementation of the method described above to com-
pute the avoid formulae would be very inefficient, as it requires
enumerating all program traces. Below we give a brief description
of a more efficient algorithm. A fuller description, albeit in a dif-
ferent setting, is given in [18].

As a first stage in the algorithm we construct the transition sys-
tem 〈σ0,Σ, T 〉. We then label every state σ ∈ Σ with a propo-
sitional formula that captures how σ can be made unreachable
(avoided) through the use of ordering constraints. Intuitively, a state
σ can be avoided by avoiding all incoming transitions to σ in the
program’s transition system. In turn, a single transition µ→ σ can
be avoided by either avoiding its source state µ or by prohibiting the
transition itself. We associate with each transition t ∈ T a formula:

prevent(t) =
∨
{[l ≺ lt] | ∃x, v.〈l, v〉 ∈ Set(Bsrc(t),proc(t)(x))}

Here, we use proc(t) to denote the process that executes the tran-
sition t and src(t) to denote the source state of the transition.
This formula captures all possible ordering constraints that would
prohibit execution of t. Formally, it is a disjunction because it is
enough to enforce one of the constraints to make t unreachable.

To compute how a state σ ∈ Σ can be avoided, we define a
labeling function L and:

avoid(L, σ) =
∧
{(L(µ) ∨ prevent(t)) | t = (µ→ σ) ∈ T}

We then define a transformer that updates the labeling function:

infer(L) = L[σ 7→ (L(σ) ∧ avoid(L, σ))]

Given an initial mapping L0 that maps all unavoidable states to
false and the rest to true, the greatest fixed point of infer(L0)
describes all the possible ways in which any state σ can be avoided.
The greatest fixed point is computed with respect to implication
partial order L1 v L2 ≡ ∀σ ∈ Σ.L1(σ) ⇒ L2(σ). Using
the provided specification, we identify a set E ⊆ Σ of reachable
error states. We then compute the overall constraint formula ψ
by taking the conjunction of avoid constraints for all error states:
ψ =

∧
{L(σ) | σ ∈ E}. A satisfying assignment to this formula is

guaranteed to represent a correct fence placement.

5.3 Inference under Abstract Semantics
We can extend the abstract model in the same way we extended the
concrete model. That is,Hp(x) and Sp(x) will contain 〈label, value〉
pairs.

5.3.1 Inference under Disjunctive Abstraction
Using the abstract semantics of Sec. 4.2, we can construct an ab-
stract transition system for the program, and apply the same reason-

ing as in the concrete semantics, except that we adjust prevent(t):

Qσ,p(x) = Sσ,p(x) ∪ Set(Hσ,p(x))

prevent(t) =
∨
{[l ≺ lt] | ∃x, v.〈l, v〉 ∈ Qsrc(t),proc(t)(x)}

This adjustment is safe because we know that if 〈lv, v〉 ∈ Qp(x),
then for any concretization σ\ of σ, Bσ\,p(x) must contain 〈lv, v〉
at least once. This means that placing a fence between any such lv
and lt is sufficient to avoid t from σ\.

Note that it is possible to infer more fences than necessary due
to the imprecision of the abstraction. Consider the simple example
in Fig. 6, with the specification that in a final state r1 ≤ r2. If we
attempt to execute this program under partial-coherence semantics
with k = 0, we may get a trace where in the final state we have
r1 = 2, r2 = 1: (a) Process 1 performs both stores. (b) Process
1 flushes the value 2. (c) Process 2 performs the load at line 1.
(d) Process 1 flushes the value 1. (e) Process 2 performs the load at
line 2. The single avoidable transition in this trace is the execution
of the second store by process 1. The only way to avoid this
transition is by placing a fence between the two stores. However, if
we increase the precision of the abstraction and use k = 1, we will
not produce this (spurious) trace and will not infer the redundant
fence.

Process 1:

1 store x = 1;
2 store x = 2;

Process 2:

1 load r1 = x;
2 load r2 = x;

Figure 6. Fully disjunctive partial-coherence abstraction with k =
0 leads to a redundant fence between the stores in Process 1, while
with k = 1 the inference algorithm determines that no fences are
necessary.

5.3.2 Inference under Partially Disjunctive Abstraction
For the abstract semantics of Sec. 4.3, we need to adjust prevent(t):

prevent(t) =
∧
{[l ≺ lt] | ∃x, v.〈l, v〉 ∈ Qsrc(t),proc(t)(x)}

The only change from the fully disjunctive abstraction is in re-
placing

∨
with

∧
. The reason for this change becomes clear once

we examine the concretization function for the partially disjunc-
tive abstraction. As pointed out in the previous section, given an
abstract state σ and a non-empty Sσ,p(x), there exist concretized
states which do not contain all values in Sσ,p(x). Since prohibit-
ing a transition from σ requires prohibiting that transition from all
concrete states represented by σ, prevent(t) must be a conjunc-
tion over the possible prevent formulas in the concrete domain.
For many transitions, this formula will be stronger than the opti-
mal one, potentially leading to a fence placement worse than the
one produced by the fully disjunctive abstraction with the same k
value.

5.4 Fine-grained fence inference
The inference algorithm described above generates sets of con-
straints that must be enforced so that the specification is satisfied.
One simple way to enforce a constraint [l1 ≺ l2] is by placing
a full fence on every path between l1 and l2 on the control-flow
graph of the program. If finer-grained fences are available on the
architecture we can use information encoded in the constraint to
implement it more efficiently. For example if the architecture pro-
vides separate store-store and store-load fences we can place the
appropriate fence based on whether the instruction at l2 is a store
or a load. If the architecture provides fences that enforce flushing
only one variable (e.g., CAS in our concrete PSO semantics) then
we can place the correct fence type based on the variable written

to by l1. For simplicity, in Section 6 we assume the only fence
available is a full fence. However, whenever inference succeeds we
could trivially place finer-grained fences.

6. Experience
We implemented our abstractions together with the verification and
inference algorithms in a tool called BLENDER. Using BLENDER, we
demonstrate the effectiveness of our abstractions by successfully
verifying and inferring the required fences in a number of challeng-
ing algorithms. None of these algorithms could be handled by exist-
ing approaches. Further, we illustrate an inherent trade-off between
the optimality of fence inference and the state-space size dictated
by the abstraction.

BLENDER is implemented in Java and uses the JavaBDD library
to represent avoid formulae as BDDs. All experiments were con-
ducted on an 8-CPU Xeon 1.6GHz with 16GB memory running a
64-bit Sun JVM on Red Hat Linux.

Abstractions In our experiments, we consider a range of abstract
memory models, all of which are abstractions of the concrete PSO
memory model:
• Set: an abstraction of the store buffer to a set, without any

additional information such as recency.
• FD: the partial coherence abstraction shown in Sem. 3, with

varying k.
• PD: the partially disjunctive abstraction described in Sec. 4.3.

Note that the Set abstraction and FD/PD with k = 0 are
generally not SC-Recoverable. Thus, it is possible that during fence
inference, BLENDER will report the program as impossible to fix.

6.1 Benchmarks

To evaluate our tool, we chose various classic concurrent algo-
rithms such as well-known mutual exclusion algorithms (mutex)
and synchronization barrier algorithms. All algorithms were exer-
cised in a loop by two concurrent processes (“repeated entry”):
• Dekker’s Algorithm [11]. To evaluate both inference and verifi-

cation we used two versions:
Dek0: has no added fences and is incorrect under the PSO
memory model.
Dek2: has two added fences and is known to be correct.

• Peterson’s Algorithm [31], using two versions, Pet0 and Pet2.
• A variation of Lamport’s Bakery [19] using two versions, Lam0

and Lam2. To make this algorithm finite-space we manually
bounded the maximum ticket number at 2.

• Lamport’s Fast Mutex [21] using two versions, Fast0 and Fast3.
• CLH queue lock [26] using two versions, CLH0 and CLH2
• Centralized sense-reversing synchronization barrier [14] using

two versions Sense0 and Sense1.
For the mutual exclusion, the specification is that there cannot be
more than one process inside the critical section. “Release seman-
tics” for operations within the critical section are not enforced.
The benchmarks were selected based on two criteria:

Novelty The benchmarks could not be handled by any of the pre-
vious approaches. For instance, as mutual exclusion algorithms in-
herently contain benign data races, using techniques like delay set
analysis [34] would result in a gross over-estimation of the required
fences. Furthermore, some of the benchmarks — for instance Dek
and Fast — contain benign triangular data races (as defined in
[28]). Thus, even if we focus squarely on the TSO memory model,
we could not use the results of [28] to establish the correctness of
the algorithms by focusing only on sequentially consistent execu-
tions. Finally, all of the benchmarks contain unbounded spin-loops,
and as such, they cannot be handled directly using the bounded
techniques of [18] or [5].

Simplicity Our focus in this work has been abstracting the effect
of the relaxed memory model in isolation from other sources of
unboundedness. Hence, we chose our algorithms to be finite-state
when executed under the SC model. We defer the problem of ver-
ifying infinite-state programs using abstract memory models (e.g.,
by composing our abstractions with heap or predicate abstractions)
to future work.

6.2 Verification
Tab. 1 shows the verification results produced by BLENDER with
three abstractions. The programs we used here are the ones we
know to be correct under the concrete PSO semantics, that is,
appropriate fences have been placed in advance. All verification
runs completed within 30 seconds. Each entry in the table contains
the total number of states explored (in thousands). A mark is
placed if verification succeeded and a # mark if a spurious (ab-
stract) counter-example was found. In some of the runs of CLH2,
BLENDER exhausted the available memory, and thus we do not re-
port the state-space size. However, in both those cases an (abstract)
counter-example was found before BLENDER ran out of memory.

Prog. Set FDk=0 FDk=1

Sense1 0.6 1.7 0.8
Pet2 # 7.7 2.4 1.8
Dek2 # 9.7 4.5 3.1
Lam2 # 41.2 22.2 9
Fast3 # 22.2 # 16.4 11.1
CLH2 # M # M 68.8

Table 1. Verification results and number of states (in thousands).

6.2.1 Discussion
As Tab. 1 shows, none of the correct examples could be verified
using the naive set abstraction, however all of them could be veri-
fied using FD with k = 1. Since verification of all examples suc-
cessfully completed with FD, there was no need to use the PD ab-
straction. The table also shows FDk=0 generated spurious counter-
examples for CLH2 and Fast3 but not the other algorithms. When
k = 0, the partial-coherence abstraction (FDk=0) reduces to the
set abstraction with recency information. This is enough to verify
the simpler algorithms, however it fails on the more complex ones.

The example of Lamport’s fast mutex is particularly interest-
ing, as it demonstrates the type of executions possible with non
SC-recoverable abstractions. Consider the code in Fig. 7. In this
implementation a process can enter the critical section either along
the fast path (the if condition in line 15 is false) or along the slow
path (the conditions is true). Under an abstract model with k = 0,
the following execution is possible:
• Process 1 enters the critical section along the fast path, executes

it, and runs until line 29.
• Process 1 executes line 29. At this point S1(y) = {0}.
• Process 1 flushes y non-destructively, using the FLUSH-SN

rule. Now G(y) = 0.
• Process 2 enters the critical section. Since G(y) = 0 it enters

along the fast-path setting y = 2 in the process. This is flushed
destructively using the FLUSH-SD rule. At this point G(y) =
2, S1(y) = {0}, S2(y) = ∅.

• Process 1 resumes. It first performs a flush of y, settingG(y) =
0. Then it proceeds to enter the critical section again, using the
fast path.

This execution relies on the fact p1 only stored the value 0 to y
once, but this store is flushed twice. In effect, p2 observed this store
as if it happened before its own, and p1 observed it as if it happened
after the store of p2. This coherence violation would have been
prevented if we kept more information in the content of the buffer,
by using k > 0. Indeed, with k = 1, Fast3 passes verification.

1 while(true)
2 {
3 start:
4 store b[i] = true;
5 store x = i;
6 load local_y = y;
7 if (local_y 6= 0) {
8 store b[i] = false;
9 while(local_y 6= 0)

10 load local_y = y;
11 goto start;
12 }
13 store y = i;
14 load local_x = x;

15 if (x 6= i) {
16 store b[1] = false;
17 do {
18 load other_b = b[3-i];
19 } while (other_b 6= 0);
20 load local_y = y;
21 if (local_y 6= i)
22 {
23 while(local_y 6= 0)
24 load local_y = y;
25 goto start;
26 }
27 }
28 //Critical Section
29 store y = 0;
30 store b[i] = false;
31 }

Figure 7. A version of Lamport’s fast mutex algorithm for 2 pro-
cessors. The code given is for process i.

6.3 Inference

In Tab. 2 we show the state-space size and inference results for
5 of the under-fenced implementations. A mark of means the
optimal fences were inferred, G# means that sub-optimal fences
were inferred, and # means that BLENDER was unable to infer
fences as according to the analysis any fence placement would
leave the program incorrect. M appears if BLENDER ran out of
memory.

Prog. FDk=0 FDk=1 PDk=0 PDk=1 PDk=2

Sense0 G# 57.6 58.6 G# 31.9 44.3 6.1
Pet0 69.2 524.5 G# 25.3 G# 244.7 1124.2
Dek0 424.2 3238.1 G# 16.5 G# 358.1 2350.0
Lam0 M M - G# 421.0 G# 4045.9 M -
Fast0 M - M - # 220.6 M - M -
Fast1a G# 139.0 105.2 # 33.0 88.1 41.9
Fast1b G# 832.9 972.3 # 78.6 G# 501.6 878.4
Fast1c M - M - # 110.4 G# 1173.4 1858.1
CLH0 M - M - M - M - M -

Table 2. Inference results and number of states (in thousands).

6.3.1 Discussion

Initially, we used BLENDER to perform fence inference with abstrac-
tions FDk=0 and FDk=1. However, BLENDER ran out of memory
for Lam0, Fast0, and Fast1c. Using the partially disjunctive ab-
straction PDk=0 enabled us to run the inference algorithm for both
Lam0 and Fast1c and obtain a sound fence placement for both. Fur-
thermore, despite the loss of precision in the PD abstraction, in
both cases the inferred fences are not trivial.

6.3.2 Peterson’s Algorithm

Our results for Peterson’s algorithm demonstrate the inherent trade-
offs between inference optimality and abstraction precision:
• With the FD abstraction BLENDER was able to infer the optimal

fence placement with k = 0. With the PD abstraction it
required k = 2 and a much larger state-space.

• With the PDk=0 abstraction we can produce a smaller state
space but the result is suboptimal: 3 fences are required instead
of 2. In addition to the two fences shown in Fig. 2, another
fence, immediately after the store in line 14, is inferred.

The same trade-off can also be observed when using a similar
partial-coherence abstraction of the TSO model. For k = 0 and
k = 1 suboptimal fence placement is generated, while with k = 2
the result is optimal (for TSO).

6.3.3 Lamport’s Fast Mutex
For both Fast0 and Sense0, we experienced a loss of precision
when using a k value that is too small. In the case of Fast0, the
inference algorithm reported the program as unfixable when using
PDk=0. This is due to the fact the counter-example presented for
Fast3 under this abstract model cannot be fixed with any number of
fences. Unfortunately, BLENDER was unable to build the state-space
of Fast0 under PDk=1. Thus, we’ve run a complementary set of
experiments in which 1 of the 3 required fences was placed. The 3
versions of Lamport’s fast mutex (Fig. 7) we have ran had a single
fence inserted: (i) between lines 5 and 6 (Fast1a), (ii) between
lines 13 and 14 (Fast1b), (iii) between lines 29 and 30 (Fast1c).
As expected, for all 3 programs, when running under PDk=0 the
program was unfixable. However, in all 3 cases we were able to
infer a correct fence placement using PDk=1. Furthermore, for
Fast1a and Fast1b the optimal placement of the two other fences
was found when using PDk=2. For Fast1c even with k = 2 the
placement was still suboptimal. This demonstrates another example
of the interplay between the placed fences and the precision of the
required abstraction. Even though for Fast1c we could not infer
the optimal fence placement using PDk=1, had we placed them
manually, this abstraction could be used to verify them.

7. Related Work
Data-Race Freedom Guarantee A common technique to reduce
the complexity of analyzing programs under relaxed memory mod-
els is to focus only on programs that have no data-races under
sequentially consistent executions. For such programs the “funda-
mental property of memory models” [32] (also known as the DRF
theorem) ensures that there can be no sequentially inconsistent exe-
cutions. Owens (in [28]) studies a generalization of this theorem for
the x86-TSO model. To guarantee correctness under this model one
needs only to prove sequentially consistent executions satisfy “tri-
angular race-freedom”, a property weaker than general data race-
freedom. In our work, we focus on abstractions of arbitrary pro-
grams and unlike these methods, we can handle programs that con-
tain data-races, such as common lock-free algorithms and mutual
exclusion primitives.

Checking Equivalence To Sequential Consistency In [6] and
[7] algorithms are presented that can, based only on sequentially
consistent executions, find violations of sequential consistency un-
der the TSO and PSO memory models. Similarly, it is possible to
place fences to preserve only SC executions using Delay Set Anal-
ysis ([34]), for instance as implemented in the Pensieve compiler
([12, 22]). However, a violation of SC does not necessarily cause a
violation of any high-level properties. Thus those algorithms are of-
ten needlessly conservative. Our approach, on the other hand, uses
a high-level specification and allows a trade-off between precision
and optimality of the solution.

Explicit Model Checking for Relaxed Memory Models [17, 18,
30] describe explicit-state model checking under the Sparc RMO
model. Among those, [18] focuses on fence inference. [15] also
describes an explicit-state model checking and inference technique
for the .NET memory model, but it suffers from significant tech-
nical drawbacks (c.f. [18]). However, the techniques presented in
[18] are not applicable in our setting. (i) The FENDER algorithm
described in [18] can only infer fences for programs that are finite-
state under the relaxed memory model, and not under the sequen-
tially consistent model. While this distinction might seem subtle, it
is in fact significant. For example, FENDER relies on finite clients of
lock-free data structures being finite-state. Unfortunately, there is
no guarantee that a data structure that is lock-free under SC will
stay lock-free under a relaxed model. More generally, any code
that uses a spin-loop with a store in the loop body will always be

infinite-state under a relaxed model, unless the store is followed by
a fence. Since classical implementations of synchronization prim-
itives use this code pattern, it is not possible to use FENDER to in-
fer fences in those implementations. In contrast, the technique we
present in this paper requires the input to be finite-state only under
SC. (ii) More technically, the algorithm is phrased in terms of ex-
ecution buffer semantics. Adapting it to store-buffer semantics is
challenging, especially in the abstract case.

In [5], Burckhardt et. al take a different approach to verification
under RMM. Instead of working with operational memory mod-
els and explicit model-checking, they convert programs into a form
that can be checked against an axiomatic model specification. This
technique still suffers from the same limitation — it must unroll
loops at a preprocessing stage. Thus it cannot verify programs that
contain unbounded spinning. In contrast, our verification approach
is based on abstract interpretation and is sound for any input pro-
gram and any values of the abstraction parameters. An alternative
approach, in the spirit of [5, 18], is to assume a bound on the size
of buffers or the number of loop iterations. Combined with iter-
ative increase of the bound, this may work for some examples —
but not in the general case. In addition, using an abstraction is bene-
ficial not only when the buffers are unbounded. Even if the buffer is
bounded, the concrete state-space may simply be too large — while
in fact representing the buffers with full precision is not important
to the correctness of the algorithm.

Synchronization Inference In [38, 40], the authors propose al-
gorithms that automatically infer synchronization constructs such
as atomic sections and conditional critical regions. These works
assume sequential consistency and do not support weak memory
models. The approach of [38] is close to our work in spirit, and
deals with inferring synchronization under abstraction, but it enu-
merates traces explicitly, which does not scale to our setting.

In [37, 39], inference of synchronization is performed by syn-
tactic exploration of placements of atomic sections to create can-
didate algorithms, and using a backing verifier to attempt verifica-
tion of each candidate. In principle, a similar approach can be em-
ployed for fence inference by exploring candidate algorithms with
all possible fence placements. In contrast, our constraint-based ap-
proach lays the ground for inference of more advanced fences, such
as fence per variable, and conditional fences, for which syntactic
exploration will yield a non-feasible number of candidates.

Alternative Buffer Abstractions In [23] the authors use automata
as symbolic representation of store buffers in the TSO memory
model. Their approach uses an acceleration technique that does
not guarantee termination. Furthermore, their automata-based rep-
resentation preserves redundant information, and as noted by the
authors themselves, ends up being too expensive to be of practical
interest. Since store buffers are similar to FIFO channels in commu-
nicating FSMs (CFSMs), it is tempting to employ techniques from
CFSMs in our context as well. These techniques include algorithms
based on symbolic representation of channel content (e.g., [4]), and
conservative abstractions for FIFO channels (e.g., [13]). Abstrac-
tion of FIFO channels, as presented in [13], is similar in spirit to
our approach in that it guarantees termination by using approxima-
tion. However, their abstraction preserves a slightly different kind
of information than the information required for reasoning about
store buffers. They use a regular abstraction of queue content and
an expensive widening operation to establish correct usage of pro-
tocols. This is more than what is required in our setting in terms
of characterization of buffer content, and often less than needed in
terms of recency information. In contrast to these, our technique
guarantees termination by using conservative approximation, and
our abstractions are tailored to relaxed memory models.

8. Conclusions and Future Work
We present an approach for automatic verification and fence infer-
ence for concurrent programs running under relaxed memory mod-
els. Our approach is based on abstract interpretation, and its tech-
nical core is a family of partial-coherence abstractions that provide
a (parametric) bounded representation for potentially unbounded
store buffers. Our abstractions enable us to automatically verify
concurrent algorithms without worrying about the size of the un-
derlying store buffers. Because partial coherence abstractions are
designed to be SC-Recoverable, they can be used for automatic in-
ference of memory fences. We have implemented our approach in
a tool called BLENDER and applied it to verify several correctly-
fenced concurrent algorithms and automatically infer fences in
under-fenced versions of these algorithms. In the future, we plan
to combine our abstractions with heap abstractions to enable veri-
fication of heap-manipulating programs under RMMs.

Acknowledgments
The authors wish to thank Noam Rinetzky and Greta Yorsh for their
comments on earlier drafts of this paper. This research was partially
supported by The Israeli Science Foundation (grant no. 965/10).

References
[1] ADVE, S. V., AND GHARACHORLOO, K. Shared memory consis-

tency models: A tutorial. IEEE Computer 29 (1995), 66–76.
[2] ATIG, M. F., BOUAJJANI, A., BURCKHARDT, S., AND MUSUVATHI,

M. On the verification problem for weak memory models. In POPL
(2010), pp. 7–18.

[3] BOEHM, H.-J. Threads cannot be implemented as a library. SIGPLAN
Not. 40, 6 (2005), 261–268.

[4] BOIGELOT, B., GODEFROID, P., WILLEMS, B., AND WOLPER, P.
The power of QDDs. In SAS (1997), Springer, pp. 172–186.

[5] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. Check-
Fence: checking consistency of concurrent data types on relaxed mem-
ory models. In PLDI (2007), pp. 12–21.

[6] BURCKHARDT, S., AND MUSUVATHI, M. Effective program verifi-
cation for relaxed memory models. In CAV (2008), pp. 107–120.

[7] BURNIM, J., SEN, K., AND STERGIOU, C. Sound and complete mon-
itoring of sequential consistency in relaxed memory models. Tech.
Rep. UCB/EECS-2010-31.

[8] BURNIM, J., SEN, K., AND STERGIOU, C. Testing concurrent pro-
grams on relaxed memory models. Tech. Rep. UCB/EECS-2010-32.

[9] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction of approxi-
mation of fixed points. In POPL (1977), pp. 238–252.

[10] COUSOT, P., AND COUSOT, R. Systematic design of program analysis
frameworks. In POPL (1979), pp. 269–282.

[11] DIJKSTRA, E. Cooperating sequential processes, TR EWD-123. Tech.
rep., Technological University, Eindhoven, 1965.

[12] FANG, X., LEE, J., AND MIDKIFF, S. P. Automatic fence insertion
for shared memory multiprocessing. In ICS (2003), pp. 285–294.

[13] GALL, T. L., JEANNET, B., AND JRON, T. Verification of commu-
nication protocols using abstract interpretation of FIFO queues. In
AMAST (2006), pp. 204–219.

[14] HENSGEN, D., FINKEL, R., AND MANBER, U. Two algorithms for
barrier synchronization. Int. J. Parallel Program. 17, 1 (1988), 1–17.

[15] HUYNH, T. Q., AND ROYCHOUDHURY, A. Memory model sensitive
bytecode verification. Form. Methods Syst. Des. 31, 3 (2007).

[16] IBM. Power ISA v.2.05. 2007.
[17] JONSSON, B. State-space exploration for concurrent algorithms under

weak memory orderings: (preliminary version). SIGARCH Comput.
Archit. News 36, 5 (2008), 65–71.

[18] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic infer-
ence of memory fences. In FMCAD (2010), pp. 111–119.

[19] LAMPORT, L. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM 17, 8 (1974), 453–455.

[20] LAMPORT, L. How to make a multiprocessor computer that correctly
executes multiprocess program. IEEE Trans. Comput. 28, 9 (1979),
690–691.

[21] LAMPORT, L. A fast mutual exclusion algorithm. ACM Trans.
Comput. Syst. 5, 1 (1987), 1–11.

[22] LEE, J., AND PADUA, D. A. Hiding relaxed memory consistency
with a compiler. IEEE Trans. Comput. 50, 8 (2001), 824–833.

[23] LINDEN, A., AND WOLPER, P. An automata-based symbolic ap-
proach for verifying programs on relaxed memory models. In SPIN
(2010), pp. 212–226.

[24] MADOR-HAIM, S., ALUR, R., AND MARTIN, M. M. K. Generating
litmus tests for contrasting memory consistency models. In CAV
(2010), pp. 273–287.

[25] MADOR-HAIM, S., ALUR, R., AND MILO, M. Plug and Play Com-
ponents for the Exploration of Memory Consistency Models. Tech.
Rep. MS-CIS-10-02, University of Pennsylvania, 2010.

[26] MAGNUSSON, P. S., LANDIN, A., AND HAGERSTEN, E. Queue
locks on cache coherent multiprocessors. In Proceedings of the Int.
Symp. on Parallel Processing (1994), IEEE, pp. 165–171.

[27] NARAYANASAMY, S., WANG, Z., TIGANI, J., EDWARDS, A., AND
CALDER, B. Automatically classifying benign and harmful data races
using replay analysis. In PLDI (2007), pp. 22–31.

[28] OWENS, S. Reasoning about the implementation of concurrency
abstractions on x86-TSO. In ECOOP (2010).

[29] OWENS, S., SARKAR, S., AND SEWELL, P. A better x86 memory
model: x86-TSO. In TPHOLs (2009), pp. 391–407.

[30] PARK, S., AND DILL, D. L. An executable specification and verifier
for relaxed memory order. IEEE Trans. on Computers 48 (1999).

[31] PETERSON, G. L. Myths about the mutual exclusion problem. Inf.
Process. Lett. 12, 3 (1981), 115–116.

[32] SARASWAT, V. A., JAGADEESAN, R., MICHAEL, M., AND VON
PRAUN, C. A theory of memory models. In PPoPP (2007), ACM,
pp. 161–172.

[33] SARKAR, S., SEWELL, P., NARDELLI, F. Z., OWENS, S., RIDGE,
T., BRAIBANT, T., MYREEN, M. O., AND ALGLAVE, J. The se-
mantics of x86-cc multiprocessor machine code. In POPL (2009),
pp. 379–391.

[34] SHASHA, D., AND SNIR, M. Efficient and correct execution of
parallel programs that share memory. ACM Trans. Program. Lang.
Syst. 10, 2 (1988), 282–312.

[35] SHEN, X., ARVIND, AND RUDOLPH, L. Commit-reconcile & fences
(CRF): a new memory model for architects and compiler writers.
SIGARCH Comput. Archit. News 27, 2 (1999), 150–161.

[36] SPARC INTERNATIONAL, INC. The SPARC architecture manual
(version 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[37] VECHEV, M., AND YAHAV, E. Deriving linearizable fine-grained
concurrent objects. In PLDI (2008), pp. 125–135.

[38] VECHEV, M., YAHAV, E., AND YORSH, G. Abstraction-guided
synthesis of synchronization. In POPL (2010), pp. 327–338.

[39] VECHEV, M. T., YAHAV, E., BACON, D. F., AND RINETZKY, N.
CGCExplorer: a semi-automated search procedure for provably cor-
rect concurrent collectors. In PLDI (2007), pp. 456–467.

[40] VECHEV, M. T., YAHAV, E., AND YORSH, G. Inferring synchroniza-
tion under limited observability. In TACAS (2009), pp. 139–154.

[41] YANG, Y., GOPALAKRISHNAN, G., AND LINDSTROM, G. UMM: an
operational memory model specification framework with integrated
model checking capability. Concurr. Comput. : Pract. Exper. 17, 5-6
(2005), 465–487.

