
Effective Abstractions for
Verification under Relaxed Memory Models

Andrei Dan1, Yuri Meshman2, Martin Vechev1, and Eran Yahav2

1 ETH Zurich
2 Technion

Abstract. We present a new abstract interpretation based approach for automat-
ically verifying concurrent programs running on relaxed memory models.
Our approach is based on three key insights: (i) behaviors of relaxed models (e.g.
TSO and PSO) are naturally captured using explicit encodings of store buffers.
Directly using such encodings for program analysis is challenging due to shift op-
erations on buffer contents that result in significant loss of analysis precision. We
present a new abstraction of the memory model that eliminates expensive shifting
of store buffer contents and significantly improves the precision and scalability
of program analysis, (ii) an encoding of store buffer sizes that leverages knowl-
edge of the abstract interpretation domain, further improving analysis precision,
and (iii) a source-to-source transformation that realizes the above two techniques:
given a program P and a relaxed memory model M , it produces a new program
PM where the behaviors of P running on M are over-approximated by the be-
havior of PM running on sequential consistency (SC). This step makes it possible
to directly use state-of-the-art analyzers under SC.
We implemented our approach and evaluated it on a set of finite and infinite-
state concurrent algorithms under two memory models: Intel’s x86 TSO and PSO.
Experimental results indicate that our technique achieves better precision and
efficiency than prior work: we can automatically verify algorithms with fewer
fences, faster and with lower memory consumption.

1 Introduction

To improve performance, modern hardware architectures support relaxed memory mod-
els. A relaxed memory model allows the underlying architecture to reorder memory op-
erations and execute them non-atomically. As a result, a concurrent program can have
additional behaviors that would not be possible to obtain under the intuitive, sequen-
tially consistent setting [16]. These additional relaxed behaviors complicate the task of
reasoning about the correctness of the program, manually and automatically.

This necessitates the development of new, scalable and precise analysis techniques
for automatic verification of (potentially infinite-state) concurrent programs running on
relaxed memory models. Automatic verification in this setting is a challenging problem
as the relaxed memory model can significantly increase the number and diversity of new
behaviors, which in turn affects the overall precision and scalability of the analysis.
Our Approach We present a new analysis system for verifying concurrent programs
running on relaxed memory models such as Intel’s x86 TSO and PSO buffered memory
models. Our system builds upon three core concepts:

First, we present a new abstraction that eliminates some of the expensive work in
managing the store buffers required by the memory model, thus significantly reducing
the analysis effort and improving its precision. This abstraction is also directly appli-
cable and useful for other verification frameworks, both finite and infinite-state (e.g.,
bounded model checking, abstract interpretation and predicate abstraction).

Second, we show how to leverage knowledge of the particular program analysis
used in this work (abstract interpretation with numerical domains) by encoding the size
of the store buffers in a way that reduces the loss of precision under that abstract domain.

Third, we address the problem of building a robust analyzer that incorporates the
above two concepts. We present a source-to-source transformation that enables direct
reuse of program analyzers under sequential consistency for verifying concurrent pro-
grams running on relaxed memory models. That is, given a program P , a specification
S and a memory model M , the transformation automatically constructs a new program
PM such that if PM |=SC S then P |=M S. The program PM contains an abstraction
of the relaxed behaviors induced by M , thereby ensuring soundness of the approach.

While prior works [10, 3, 18] also suggest source-to-source transformations, we
show experimentally that our approach is more precise and efficient: it enables verifica-
tion of (infinite-state) concurrent algorithms that prior work cannot, and for programs
where prior work succeeds, our approach is faster and requires less memory.

In addition to presenting the above techniques (useful for both finite and infinite-
state verification), this work represents one of the few studies on using abstract in-
terpretation for verifying properties of infinite-state concurrent programs running on
relaxed memory models and what’s more, our approach requires no user annotations.
Main contributions The main contributions of this paper are:

– A new abstraction for the store buffers of the memory model that eliminates ex-
pensive shifting of buffer contents. This abstraction reduces the workload on sub-
sequent program analyzers and improves their scalability and precision.

– A source-to-source transformation that realizes the new abstraction (and the mem-
ory model effects), producing a program that can be soundly analyzed with verifiers
for sequential consistency. The translation also leverages knowledge of the under-
lying abstract domain in order to encode the size of the store buffers in a way which
reduces the overall loss of analysis precision.

– A complete implementation of the approach integrated with CONCURINTERPROC [12],
a tool based on abstract interpretation [8] with numerical abstract domains that can
analyze infinite-state concurrent programs under sequential consistency.

– A thorough empirical evaluation on a range of challenging concurrent algorithms.
Experimental results indicate that our technique is superior in both precision and
efficiency to prior work and enables verification, for the first time, of several con-
current algorithms running on Intel’s x86 TSO and PSO memory models.

2 Overview

In this section we illustrate our approach on a running example. The goal of this section
is to give some intuition about and informal understanding of the work. Full formal
details are provided in later sections.

initial values: X=0 Y=0

Thread 1:

1: X = 1
2: a = Y
3: X = a + 1
4: fence
5:

Thread 2:

1: Y = 1
2: b = X
3: Y = b + 1
4: fence
5:

Spec: ((pc1 = 5)∧(pc2 = 5))⇒(X + Y ≥ 2)

Fig. 1: Example program

To understand our approach, consider the concurrent program shown in Fig. 1. It
consists of two threads that share the integer variables X and Y (variables a and b are
local to each thread). The figure also shows an assertion which holds once both threads
have completed their execution, namely that X + Y ≥ 2. Our objective is to verify that
the program satisfies this assertion under relaxed memory models such as Intel’s x86
TSO and PSO.

2.1 Relaxed Behaviors

In the example in Fig. 1, Thread 1 can execute the statements at labels 1 and 2 in
the opposite order. Similarly, Thread 2 can execute the statements at labels 1 and 2 in
the opposite order due to the nature of relaxed memory models such as TSO. Relaxed
models such as TSO allow program statements to be executed out of order, resulting
in behaviors not possible under sequential consistency. Under TSO, a store and a load
(by the same thread) accessing different memory locations are allowed to be reordered.
Therefore after both threads execute the statements at the labels 1 and 2, one can end
up in a state where the state is X = Y = 0. This state is impossible to obtain under
sequential consistency (SC), yet is allowed under TSO. Weaker models such as PSO
allow not only the reordering of store and load instructions but even the reordering of
two stores (if they access different memory locations). In general, such reorderings are
possible because the processor maintains store buffers per each thread, and delays ex-
pensive writes to shared memory. For instance, in Intel’s x86 TSO, every thread updates
a FIFO store buffer where the thread enqueues its shared memory writes and the mem-
ory sub-system dequeues these buffered writes (in the order of least recent write first)
non-deterministically and updates shared memory.

2.2 SC equivalence vs. Flexible safety specifications

When considering the problem of verifying programs running on relaxed models, there
are two general choices for how we select the safety property to be verified, each influ-
encing the design of the analysis abstraction. One direction is to develop analyzers that
try to prove and (if need to) enforce that the relaxed program produces results equiva-
lent to the sequentially consistent program (and, if not equivalent, to insert fences that

make it so). This line of work was pioneered by Shasha and Snir [22], with various
works later improving on the precision of the analysis and fence inference [23, 2].

Another direction, and the one pursued in this paper, is to develop analyzers which
can enforce arbitrary safety properties, not only equivalence. This is advantageous for
two reasons:

(i) the relaxed program might produce behaviors which are valid yet do not exist
under SC, and enforcing equivalence leads to generation of redundant fences. To
illustrate this point, consider the program in Fig. 1. As mentioned before, the
state X = Y = 1 is reachable under TSO at the end of the program. This state
is impossible to reach under SC. If we aim to achieve SC equivalence, additional
fence statements should be inserted in the program to prevent re-orderings that
lead to this state. If we focus on ensuring the safety specification, only the current
fences at labels 4 in the two threads are sufficient for verification; and

(ii) even if equivalence is the right specification, it may be difficult to produce an anal-
ysis that can prove equivalence; writing a more program specific, flexible safety
property (which enforces the same constraints) may be easier to verify. We illus-
trate this point in Section 6: we show that [2] produces redundant fences, which
our analysis avoids.

2.3 Our Approach

We now discuss the flow taken in this work. For ease of presentation, we directly present
the source-to-source transformation with the abstraction embedded into that transfor-
mation.

Step 1: Buffer analysis A preliminary step of our approach is a buffer-size analysis of
the input program (recall that a buffer exists in each thread). This analysis outputs an
over-approximation of the size of the write buffer at each point in the program. For our
running example, the analysis determines that at line 1 (of both threads), the maximum
write buffer size is 1, at line 3 the maximum buffer size is 2, and at line 5, the maximum
buffer size is 0 (due to fence).

Step 2: Abstraction and source-to-source transformation A key step of our approach
is an abstraction that eliminates buffer shifting and a source-to-source transformation
realizing that abstraction (we focus on presenting both together). Here, the write buffer
of each thread is directly encoded into the source code of the target program. The trans-
formation (with abstraction) proceeds by processing the original program in a statement
by statement manner. In Fig. 2, we show the result of applying our transformation for
TSO on the statements of Thread 1. We next informally discuss this procedure.

To encode the store buffers used by the relaxed memory model, we introduce two
kinds of variables. An example of the first kind is X1t1, which captures the value of
the first write to shared variable X found in the buffer of thread t1. An example of the
second kind is the boolean variable flagX1t1, which denotes whether or not the first
element of the write buffer of t1 stores a write to shared variable X (as in general the
first write found in the buffer of thread t1 could be to some other shared variable).

Original Transformed
statement: statement:

X = 1 X1t1 = 1
flagX1t1 = true

flush

while random do
if flagX1t1 then

X = X1t1

flagX1t1 = false

a = Y a = Y

flush

while random do
if flagX1t1 then

X = X1t1

flagX1t1 = false

X = a + 1

if flagX1t1 then
X2t1 = a + 1
flagX2t1 = true

else
X1t1 = a + 1
flagX1t1 = true

flush

while random do
if flagX1t1 then

X = X1t1

flagX1t1 = false
else if flagX2t1 then

X = X2t1

flagX2t1 = false

fence assume(¬ flagX1t1 ∧
¬ flagX2t1)

Fig. 2: The result of applying our transfor-
mation for TSO on Thread 1 from Fig. 1.
The flush statements are not part of the
program but need to be captured by the
translation (and are inserted after every pro-
gram statement).

Returning to our example, since the
buffer is initially empty, the statement
X = 1 is translated to two updates. First,
the new variable X1t1 is updated and set
to 1, and second, the boolean variable
flagX1t1 is set to true.

However, simply updating the two
newly generated variables is not enough
because under TSO (and PSO), the
memory sub-system can trigger a non-
deterministic flush of a thread’s store
buffer at any point (the flush operation
dequeues the least recent write in the
buffer and updates shared memory with
that write). To capture this behavior, we
add a special flush code fragment af-
ter every program statement. Therefore,
in our example, a flush is added after
the statements at labels 1,2 and 3. The
flush code fragments following the state-
ments at labels 1 and 2 are identical. The
loop captures the non-deterministic ef-
fects of the flush semantics: either the
flush takes place and the write stored in
X1t1 is flushed to shared memory (and if
so, the boolean variable flagX1t1 is re-
set to false), or the program continues
with no changes.

Statement a = Y is translated with-
out change as the buffer size analysis de-
termines that Y is never written to by
Thread 1 and hence the value is always
read from shared memory (as opposed to
the buffer).

Next, statement X = a + 1 is trans-
lated. The generated code fragment first tests if flagX1t1 is set to true. This answers
the question of whether the first position in the buffer is already taken. We need this test
as it is statically unknown whether a non-deterministic flush has fired. Depending on
the result of the test, we now know where to write the value a + 1. If the first position
of the write buffer is occupied, a + 1 is stored to the second element of the write buffer
and the appropriate flag is set (i.e., flagX2t1 is set to true). Otherwise, we store the
value a + 1 to the first position in the buffer and set the appropriate flag.

We next generate the flush code fragment after the statement at label 3. This flush
code is slightly different than the previous two flush fragment because at this point in
the translation, the buffer-size analysis indicates that the maximum possible buffer size

is 2. Therefore, we need to dynamically check what the actual size of the buffer is and
flush the appropriate entry. This can either be the variable X1t1 or the variable X2t1.
Naturally, once the write to shared memory is completed, we set the corresponding
auxiliary boolean variable accordingly: flagX1t1 or flagX2t1.

A key point is that we do not shift the store buffer contents on flush as a direct
encoding of the memory model would do (and as previous approaches do ; see [10],
[18]. Doing less work on a flush leads to more precise analysis and greater efficiency
than prior work.

Finally, the fence statement at label 4 ensures that all writes before the fence are
flushed to shared memory. An assume statement on both boolean variables captures
this requirement.

X = 1 X = a + 1 flush flush

Direct
translation

Robust
buffer
abstraction

rhs{1, 2}t1

lhs{1, 2}t1

1 21 21 21X{1, 2}t1

flagX{1, 2}t1

1

a = Y

cnt_t1

Shared
Memory

X: 0
Y: 1

X: 0
Y: 1

X: 0
Y: 1

X: 0
Y: 1

X: 1
Y: 1

X: 2
Y: 1

1 1 2 1 0
Write
Buffer 0

1

X

1

X

1 2

X X

2 2

X X

2 2

X X

Sequence of
Statements

Fig. 3: The effect of a program trace on shared state and the state used by the two translations.
The figure shows only statements of Thread 1 as well as flushes affecting Thread 1’s write buffer.

An example trace In Fig. 3 we illustrate how a particular program trace updates the
shared memory and the newly generated variables. The first line of that figure shows
the sequence of statements in the trace. The second line shows the shared memory
state (before and after each statement is executed). The third line (titled “robust buffer
abstraction”) shows the values of the newly generated variables. Here, the first square
box corresponds to X1t1 and the second square box corresponds to X2t1. Similarly, the
first flag corresponds to flagX1t1 and the second flag to flagX2t1. If a flag is raised,
it means the variable is set to true; otherwise it is set to false. For now we can ignore
the fourth line (this is a previous transformation used by [10] and [18] and is discussed
later in the paper in Section 4). The trace we show and discuss is:

(i) initially, flagX1t1 and flagX2t1 are set to false and shared variables X and Y

contain 0;
(ii) thread 2 executes Y = 1 and a flush updates Y in shared memory (the trace in

Fig. 3 starts after this step);
(iii) thread 1 executes X = 1 resulting in flagX1t1 being set to true and X1t1 con-

taining the value 1;
(iv) thread 1 reads a = Y, obtaining the value 1 (Fig. 3 omits local variable a, so no

changes are shown);

(v) thread 1 executes X = a + 1 resulting in flagX2t1 being set to true and X2t1

containing the value 2 at which point we have two writes in the store buffer of
Thread 1;

(vi) a flush of Thread 1’s buffer results in X1t1’s value being written to shared memory
setting X to 1 and flagX1t1 is set to false to mark that the flush completed;

(vii) a flush of Thread 1’s buffer results in X being set to 2 in shared memory and in
setting flagX2t1 to false;

Step 3: Program Analysis Once the translated (and potentially infinite-state) concurrent
program is obtained, the final step is to analyze it and attempt to prove the property of
interest. Any analysis can be used; in this work we chose logico-numerical abstract
domains for the following reasons: (i) there are readily available tools that implement
these domains (e.g., we use CONCURINTERPROC, which implements convex numerical
domains combined with boolean values), allowing us to focus on the novel parts of the
work, and (ii) our benchmarks manipulate numerical variables and the properties we
prove depend only on such numerical manipulations. We do note, however, that our
abstraction can be useful in any setting, not just that of abstract interpretation.

The resulting analysis outputs invariants for each pair of thread locations. For in-
stance, at labels 5, when both threads have completed, a fragment of the resulting in-
variant produced by the analysis is:

¬flagX1t1 ∧ ¬flagX2t1 ∧ X ≥ X1t1 ∧ X1t1 ≥ 1 ∧ ...

This invariant contains both a boolean part, consisting of concrete values for the
auxiliary variables flagX1t1 and flagX2t1, and a numerical part in the polyhedra
numerical domain: X ≥ X1t1 and X1t1 ≥ 1.

Both auxiliary boolean variables are false, which corresponds to an empty write
buffer for Thread 1. From the numerical inequalities, we conclude that X ≥ 1. Similar
constraints are obtained for the variables in Thread 2, allowing us to conclude that
Y ≥ 1. Thus, we can conclude that the specification X + Y ≥ 2 holds when both
threads terminate.

We note that for our running example, direct handling of write buffer contents as
used in [18] fails to verify the specification, even though the program satisfies it. This
is because a direct, shift-based handling causes precision loss during the analysis. In
the next section, we formally present our abstraction and transformation, discuss how it
compares to prior work, and show why it leads to more scalable and precise analysis.

3 Background

In this section we provide a brief review of previous direct encoding techniques as well
as terms that will be useful for our new abstraction in Section 4.

3.1 Direct source-to-source encoding

Let Prog be the set of all programs, Rmm be the set of relaxed memory models (in
this paper Rmm = {x86 TSO,PSO}), and N the natural numbers. The translation

mechanism can be seen as a function with the signature: T : (Prog × Rmm × N) →
Prog where P ∈ Prog is an input program, M ∈ Rmm is a relaxed memory model,
and b ∈ N is a bound on the buffer size.
The meaning of buffer size bound b Key elements of the x86 TSO memory model (and
the PSO memory model) are the store buffers found between each thread and shared
memory. Given buffer size bound b, the output of the translation is a new program
PM ∈ Prog where PM = T (P,M, b).

By construction, the behavior of PM under sequential consistency semantics cap-
tures the behavior of P under the relaxed model M , with the exception of potentially
overflowing the store buffer. That is, if during the execution of PM an attempt is made
to store more than b elements to the buffer, then the program PM aborts.

If we manage to verify that PM satisfies the specification (without aborting), we can
guarantee that P satisfies the specification under the memory model M . If the program
PM aborts, we may have to refine our model and retry verification with a larger buffer
size.

It is generally impossible to statically determine the maximal store buffer size reach-
able during a program execution. However, in practice, static analysis can over-approximate
the maximal possible store buffer size. We distinguish two cases: (i) the over-approximated
value is finite. In this case, the buffer size over-approximation is useful in optimizing
the transformation procedure, and (ii) the over-approximated value is unbounded. In
this case, the transformation has a fixed buffer bound defined by the user.

3.2 Direct Translation

We first discuss the intuitive, direct translation function which encodes the relaxed
memory semantics into the program source code. This direct translation is used by prior
works focusing on infinite-state verification [10, 18]. We denote this translation by:

TD : (Prog ×Rmm× N)→ Prog.

In the following, we use Local to denote the set of local variables (per thread) and
Shared the set of global shared variables. Expressions, both numerical and boolean,
can refer only to local variables. Statements can read and write global variables. We use
Stmt to denote all statements.

The translation encodes relaxed memory store buffers using temporary variables.
For each statement of P ∈ Prog we generate a code segment that captures the relaxed
behavior of that statement. We define a transformation function at statement level:

[[]] ∈ Stmt× Thread× N→ Stmt.

The direct translation introduces new variables for capturing the effect of storing
values into store-buffers instead of directly into main memory. For TSO (the translation
for PSO is similar), the buffer is modeled with the following local variables:

– variable identifiers: lhs1t, lhs2t, . . . , lhsbt, where b is the maximum size of the
buffer. The identifier of a global variable is an integer – it stores an index of the
shared variable to be written to shared memory.

– buffer content values: rhs1t, rhs2t, . . . , rhsbt – each stores the actual value to
be written to shared memory.

– buffer counter: cnt_t takes values in the range [0, b] – it stores the size of the buffer
during execution.

[[X = r]]tb [[r = X]]tb [[flush]]tb [[fence]]tb

if (cnt_t=b)
abort("overflow")

cnt_t = cnt_t+1
if (cnt_t=1)
lhs1t = X
rhs1t = r

...
if (cnt_t=b)
lhsbt = X
rhsbt = r

if (cnt_t=n)∧
(lhsbt=X)

r = rhsbt
...
else if (cnt_t=n)∧

(lhs1t=X)
r = rhs1t

else
r = X

while random do
if (cnt_t>0)

. ∀ X ∈ Shared :
if (lhs1t = X)

X = rhs1t
. end
if (cnt_t>1)

lhs1t = lhs2t
rhs1t = rhs2t
...
if (cnt_t=b)

lhsb−1t = lhsbt
rhsb−1t = rhsbt

cnt_t = cnt_t-1
yield

assume
(cnt_t = 0)

Fig. 4: Direct TSO Translation Rules of TD

Fig. 4 presents the rules of the direct translation. In the translation of each statement,
the generated sequence of statements is atomic. An exception to that rule is the flush in
which only the inside of the generated loop is atomic and context switches are allowed
between the loop iterations.
Write to a global variable [[X = r]]tb: the store to a global variable X first checks whether
it can exceed the buffer bound b, and if so, the program aborts. Otherwise, the counter is
incremented. The rest of the logic checks the value of the counter and updates the cor-
responding local variables. The global variable X is not updated and only local variables
are modified.
Read from a global variable [[r = X]]tb: the load from a global variable X checks the
current depth of the buffer and then loads from the corresponding local variable. When
the buffer is empty (i.e., cnt_t = 0), or the variable has no occurrences in the buffer,
the load is performed directly from shared memory.
Fence statement [[fence]]tb: the fence waits for the buffer to be empty before executing.
Flush procedure [[flush]]tb: the flush procedure is translated into a non-deterministic
loop (we use random). If the buffer counter is positive and the entry at position 1 in the
buffer (lhs1t) refers to X, then the write value at position 1 (i.e., rhs1t) is stored in
X. The contents of the local variables are then updated by shifting: the content of each
Xj+1t is moved to its predecessor Xjt where 1 ≤ j < b. Finally, the buffer count is
decremented.

To encode non-deterministic flushes of the memory sub-system, a flush procedure is
added by the translation function to the output program. The role of the flush procedure
is to soundly encode the possible non-deterministic flushes of the store buffer, triggered
by the memory subsystem. Naively, a faithful translation of the flush action requires
placing the flush code after each statement of the program that accesses shared memory.
However, this can be optimized using a simple preliminary static analysis that finds
cases where the store buffer is guaranteed to be empty (and thus no flush is needed), or
guaranteed to be bounded by a fixed size (and thus the flush code can be simplified).
Trace Example Returning to Fig. 3 of Section 2, the last row of the figure (titled “Di-
rect translation”) illustrates how a given trace is processed using the direct translation.
The key here is the processing of the first flush statement, where the contents of the
store buffer are explicitly shifted. As we will see next, such explicit shifting is in fact
completely avoided by our new abstraction and subsequent translation.
Shortcomings of the Direct Translation The main problem with the direct translation
is that it performs operations that have a devastating effect on verification. Specifically:
(i) the flush operation performs a shift of the array content, an operation that is very
costly and makes it harder to track the relationships between values; (ii) the sizes of store
buffers are tracked via numerical variables (i.e., cnt_t), the value of which may be lost
under abstraction. As we show in Section 5, these shortcomings cause verification using
direct translation to fail in more than 50% of our benchmarks, and to be costly for the
remaining ones. In the next section, we present an abstraction and a translation which
address these two shortcomings.

4 Abstraction-Guided Translation

We next present our new translation, which is based on a novel abstraction of the store
buffers. We also contrast our approach with the direct encoding discussed earlier:

TV : (Prog ×Rmm× N)→ Prog.

Our presentation focuses on the x86 TSO memory model (the details for PSO are
similar). We first discuss the new abstraction, which eliminates shifting of values in the
store buffers. Here, when an element is flushed from the buffer, the other elements main-
tain their position, significantly reducing the cost of the flush operation. This abstraction
is generally applicable for any analysis. We then discuss an approach for replacing the
counter variables that track the current size of the write buffers with boolean variables,
which also improves precision when using abstract interpretation based analysis.

4.1 Robust Buffer Abstraction – eliminating buffer shifting

The flush procedure appears at multiple places in the resulting program and hence its
operation is critical to the overall precision and scalability of the analysis. As discussed
earlier, the direct translation encodes a store buffer using two bounded arrays per thread
(i.e. lhs and rhs) and a counter. If the bound is reached during analysis, an overflow
error is triggered and the analysis aborts. When this happens, the user may increase the

[[X = r]]tb [[r = X]]tb [[flush]]tb [[fence]]tb

if OR(b,t)
abort("overflow")

else
if OR(b-1,t)
Xbt = r
flagXbt = true

else
if OR(b-2,t)
...

else
X1t = r
flagX1t = true

if (flagXbt)
r = Xbt

else
if (flagXb−1t)

...
else
r = X

while random do
yield
if (flagX1t)

X = X1t
flagX1t = false

else
if (flagY1t)

Y = Y1t
flagY1t = false

else
if (flagX2t)

...

assume
(¬OR(b,t) ∧
. . . ∧
¬OR(1,t))

Fig. 5: Abstraction-guided translation rules (i.e. TV) for TSO.

buffer bound, transform the program using the new bound, and rerun the analysis on
the newly obtained program. The flush routine in the direct translation is implemented
using a non-deterministic loop. In the loop body, the first element in the store buffer
(the oldest) is flushed to memory. Next, the remaining elements are shifted one position
to the left in the buffer. An advantage of shifting is that it frees entries at the end of
the arrays encoding the buffer, thus creating free space for buffering additional store
operations.
Key Idea: Our observation is that we can handle the flush operation without shifting the
array content, thus obtaining an abstraction (over-approximation) of the relaxed mem-
ory semantics. This approximation is sound (the proof is presented in Section 4.4) but
may introduce additional cases of overflow. That is, if a program reaches an overflow
when analyzed with our abstraction, it is possible that this overflow may not occur when
using the direct, shifting encoding. However, we believe such situations are very rare
in practice – in our evaluation in Section 5, no additional such overflows appeared in
any of the benchmarks. We formally discuss how our abstraction is incorporated into
the translation later in Section 4.3.

4.2 Replacing counters with boolean flags

Another ingredient of our approach is leveraging properties of the underlying program
analysis. Unlike the general abstraction above, here we discuss an optimization suitable
for abstract interpretation based analysis with numerical domains.

The direct translation keeps designated counters to track the current position in store
buffers. When using numerical abstract domains such as Octagon [19] and Polyhedra
[9], the exact numerical value of a variable may be abstracted away at program join
points. This abstraction, desirable in most cases, has negative effects when applied to
key variables such as buffer counters. We would therefore like to keep the values of
buffer counters even when different values for the count reach program join points.

Towards this, we use a logico-numerical domain, which combines a numerical do-
main and a logical domain that tracks boolean combinations of predicates. Rather than

storing values of buffer counters as integers in the numerical part of the domain, we en-
code them using boolean variables in the logical part. This allows us to naturally main-
tain a disjunction of possible values for counters, without joining them. Using boolean
variables to track buffer sizes therefore improves the precision of the analysis inside the
flush procedure by differentiating cases where values of counter variables differ. This
encoding can be viewed as a form of trace partitioning [20], where joins are delayed
based on certain key values (in our case, the values of counter variables).

4.3 New Translation Rules

The source-to-source translation presented next incorporates both of the ideas described
above. It replaces cnt_t counter variables with boolean variables. For each shared vari-
able X ∈ Shared, write buffer index i ∈ [1, b], and thread identifier t ∈ Thread, a
boolean variable flagXit is added.

If flagXit is true, then there is a shared variable X write in the thread t write
buffer, to position i.

The x86 TSO memory model has a single write buffer per thread. This translates
to the invariant: for a fixed i ∈ [1, b] and a fixed t ∈ Thread, there exists at most one
shared variable X such that flagXit is true. In other words, at each location of the
TSO buffer there is at most one shared variable write. We define the function:

OR(i, t) = ∨X∈Shared flagXit.

The function OR(i, t) returns true if there exists a write (to any shared variable) at
the position i in the write buffer of thread t. The previously mentioned invariant means
that at most one disjunct will be true in the formula above. Fig. 5 shows the rules of the
abstraction-guided translation:

Write to a global variable [[X = r]]tb: first checks if there is a write in the last element of
the store buffer. If so, the analysis indicates an overflow and stops. If the store buffer is
not yet full, the translation determines the highest index i in the buffer which is already
occupied and places the current write at the position i+ 1. Note that in each branch of
the if-then-else statement, a boolean variable is modified. This enables the robust buffer
abstraction (Sec. 4.1) and the boolean encoding of counters (Sec. 4.2).

Read from a global variable [[r = X]]tb: searches in the store buffer for the most recent
write to the shared variable X and returns that value. If there is no write to X in the store
buffer, then the value is read from the shared memory.

Fence statement [[fence]]tb: assumes that at this point the store buffer is empty – there
are no pending writes.

Flush action [[flush]]tb: searches for the least recent entry in the store buffer and writes
it to the shared memory. As opposed to the direct encoding, the element at position 1 is
not flushed because the shifting procedure was removed. To know which variable is the
buffered write, case testing is performed.

The new translation extends naturally to a sequence of statements and to programs
with n concurrent threads: [[P]]b = [[S]]1b ‖ · · · ‖ [[S]]nb .

4.4 Soundness of the Robust Buffer Abstraction

We next prove that the RBA abstraction incorporated in the translation TV is sound as
it over-approximates the direct translation TD. Given a program P , memory model M ,
and buffer bound b, PD = TD(P,M, b) is the program that results from applying direct
translation, and PV = TV (P,M, b) is the result of the abstraction-guided translation.

D: direct translation domain. V: abstraction-guided translation.
[b] = value of cnt_t ∈ {0 . . . b} (Shared→ Bool) = values of flagXit
Shared× N = values of lhsit, rhsit (Shared→ N) = values of Xit
BD

t = [b]× Seq≤b(Shared× N) BV
t = Seq≤b(Shared→ (Bool × N))

Fig. 6: Translation Domains

Fig. 6 summarizes the data structures needed to encode the write buffer of a thread
t in the direct and abstraction-guided translations:

– BDt is the tuple containing the value of cntt ∈ [b] and the sequence of pairs of
values for lhsi ∈ Shared and rhsit ∈ N, i ∈ {1 . . . b}.

– BVt is a sequence of elements which, for each shared variable X ∈ Shared, as-
sociate a tuple containing the boolean variable flagXit ∈ B and the stored value
Xit∈ N .

Let BD = {BDt |t ∈ Threads} and BV = {BVt |t ∈ Threads} be the sets of
values of all write buffers of the programs PD and PV .

We define the state of a translated program as the values of the shared variables,
local variables, program counter, and auxiliary variables added by the translation: σ =
〈Sharedσ, Localσ, pcσ, B〉 or σ = overflow. B is either the direct translation buffer
state BD or the abstraction-guided translation buffer state BV .

Definition 1 (Observable part of a state). The observable part of a state includes:
(i) the values of the shared variables, (ii) the values of the local variables, and (iii) the
values and order between elements of the non-empty section of the buffer.

For TD, the observable part of the state contains the values of the shared and local
variables and the values of lhsi and rhsi for i ∈ [1 . . . cnt_t]. Similarly, for TV , the
observable part of the state contains the values of the shared and local variables and the
values of Xit for i and t, where flagXit is true.

Definition 2 (Equivalent states). Two states σD and σV are equivalent if their ob-
servable parts correspond (the global and local variables have the same values and the
buffers BD and BV denote the same buffer content).

We define the transitions between two states (σi, σi+1) for transformed programs
as the translation rule (Fig. 4 or Fig. 5) corresponding to the transition in the original
program P . A trace of a program is represented as a sequence of states π = σ1 . . . σn.

Theorem 1 (The RBA abstraction used in TV is sound). For any trace πD = σD1 . . . σDs
of PD of finite length s, there exists a corresponding trace πV = σV1 . . . σ

V
s of TV , such

that for all i ∈ {1 . . . s}, σVi and σDi are equivalent or σVi is overflow.

Proof. The proof is by induction on the length of πD.
First, we show how to build the trace πV . Given πD = σD1 . . . σDs , the transition

(σDi , σ
D
i+1) for i ∈ [1 . . . s−1] is a rule in Fig. 4, corresponding to the translation of

an instruction in program P . We construct πV by applying at each step (σVi , σ
V
i+1) the

corresponding rule from Fig. 5.
Next, we prove that πV and πD have equivalent states.
Base case: for i = 1, in the initial state, all write buffers are empty, the shared

variables have their initial values, and the local variables are not yet declared. Thus,
states σV1 and σD1 are equivalent.

Induction step: for i > 1, we assume that the states σVi and σDi are equivalent or σVi
is overflow. If σVi is overflow, then σVi+1 is also overflow (by convention, an overflow
state cannot be changed).

If σVi is not overflow, then the states σVi and σDi are equivalent (by the induction
assumption). Our construction applies the transition (σDi , σ

D
i+1) as defined by the rules

in Fig. 4 and the corresponding transition (σVi , σ
V
i+1) as defined by Fig. 5. We now show

that σDi+1 and σVi+1 are equivalent or σVi+1 is overflow via case splitting on the transition
type:

– store: write to a global variable [[X = r]]tb. Here, the local and shared variables
remain unchanged. From the induction assumption σDi and σVi , buffers hold the
same values in the same order. From the assumption σDi 6= overflow and from the
definition of store, we have that buffer content in σDi and σVi is the same or σVi+1

will reach overflow.
– load: read from a global variable [[r = X]]tb. Here, the buffer contents are unchanged.

The shared variables are also unchanged. From the induction assumption and the
definition of load we have that the values of r for σDi+1 and for σVi+1 are the same.

– fence: fence statement [[fence]]tb. Here, the transition assumes that at this point
the store buffers are empty for both translations. The states do not change and the
assumption on σDi and σVi propagates to the states σDi+1 and σVi+1.

– flush: flush action [[flush]]tb. Here, the local variables are unchanged. From the in-
duction assumption, the buffers of σDi and σVi hold the same values in the same
order, i.e., the same least recent element in the buffer will be flushed to main mem-
ory for σDi+1 and σVi+1.
This concludes the proof of Theorem 1 that TV is an over-approximation of TD

and the RBA abstraction is sound. This also means that even if the trace πD does not
reach an overflow, the corresponding trace πV may result in overflow.

5 Evaluation

We implemented our approach and evaluated it on a range of challenging concurrent
algorithms. We then compared its performance with the direct transformation discussed
earlier [18]. All our experiments ran on an Intel(R) Xeon(R) 2.13 GHz server with 250

Table 1: Verification results comparing our new transformation with prior work [18]

Abstraction-guided translation Direct translation [18]
Program Model Number fences Time (sec) Memory (MB) Time (sec) Memory (MB)

Abp TSO 0 5 189 14 352
PSO 0 6 167 12 222

Bakery TSO 4 1148 4749 - -
PSO 4 3429 10951 - -

Concloop TSO 2 8 547 18 891
PSO 2 6 504 23 783

Dekker TSO 6 227 2233 - -
PSO 4 121 1580 - -

Kessel TSO 4 14 357 15 424
PSO 4 6 198 80 628

Loop2 TLM TSO 2 66 2234 - -
PSO 2 36 1650 - -

Peterson TSO 2 89 1549 - -
PSO 4 20 901 331 2280

Pgsql TSO 3 282 1727 - -
PSO 1 55 758 - -

Queue TSO 1 1 101 1 115
PSO 1 1 108 1 106

Sober TSO 2 30 1784 - -
PSO 3 148 263 215 3499

Szymanski TSO 3 1066 3781 - -
PSO 4 507 2076 - -

Chase-Lev WSQ TSO 2 17 550 - -
PSO 4 9 520 10 528

THE WSQ TSO 4 125 1646 - -
PSO 4 391 2338 - -

GB RAM. To perform the analysis, we used CONCURINTERPROC [12], a tool based on
the APRON library [13], which supports various numerical abstract domains. We relied
on the Z3 [11] SMT solver to check that the inferred invariants imply the specification.

The verification procedure has three steps:

(i) Applying the transformation on program P , obtaining a new program PM .
(ii) Running CONCURINTERPROC on that transformed program.

(iii) Using Z3 to check whether the inferred invariants satisfy the specification.

The above procedure is repeated until it is no longer possible to further reduce
the number of fences in the algorithm. We evaluated our approach on 13 concurrent
algorithms, out of which 5 are infinite-state. The safety specifications are either mutual
exclusion or reachability invariants involving labels of different threads.

Our main goal was to study the Abstraction-guided translation precision and effi-
ciency gains (i.e. memory consumption, speed) compared to the direct translation [18],
while using the same analysis tool (in this case CONCURINTERPROC) to verify the output
programs. Where applicable, we also discuss how our work compares to other works
that are state of the art(here and in Section 6). Table 1 summarizes our experimental
results for both the x86 TSO and PSO memory models.

The minimal number of fences necessary to verify each algorithm are shown in
column 3 of Table 1. The time and memory resources used by the analysis are shown
for both the new transformation (in columns 4 and 5 of the table) and the previous
transformation (in columns 6 and 7). We observe two trends:

– For Bakery, Dekker, Loop2-TLM, Pgsql, Szymanski and THE WSQ, the new trans-
formation verifies the program with strictly fewer fences than the direct translation.
The dash indicates that verification failed (out of memory or timeout) for those
placements (or their subsets) using the direct translation.

– For the rest of the benchmarks, the direct translation was successful in verifying the
same fence placement as our new translation. But in all those cases the time and
memory consumption were better using the new translation, and in some instances
(e.g., Sober) memory consumption was reduced by 10x.

Comparison to other work Recent work [2] infers fences such that the program under
the relaxed model is equivalent to SC – recall that we discussed such approaches as
one of two general approaches in Section 3. Although scalable, the authors’ abstraction
tends to lead to significant precision loss, thus inserting redundant fences. For instance,
in Lamport’s Bakery under TSO, their abstraction inserts 8 fences, compared to 4 fences
inserted by our analysis. This precision loss is observed also for other mutual exclusion
algorithms such as Peterson under TSO (3 vs. 2 fences) and Szymansky under TSO (8
vs. 3 fences).

Another line of work [3] also produces an SC program from the original program
and the relaxed memory model semantics. The work uses testing to find bugs in many
litmus tests and algorithms (e.g., Bakery, Peterson, Dekker, Szymanski), but does not
actually perform verification on any of them. Nor does it address the problem of how the
proposed translation would affect infinite-state verification. For instance, when we tried
[3] even on a few small examples, the resulting SC program used many more auxiliary
boolean variables than our translation (e.g., 40 vs. 8). Note that even a small increase in
the number of boolean variables quickly leads to state explosion (more disjunctions) in
the program analysis. This is also confirmed by our experiments with CONCURINTER-
PROC, where, for instance, any program with more than 40 boolean variables could not
be verified due to state explosion.
Summary of Results In summary, for each program, our new transformation enables
verification with a lower or equal number of fences compared to the direct translation.
The new transformation also leads to a more efficient (in space and time) subsequent
analysis of the resulting program. Based on our experimental results, we believe that
our new abstraction-gudied transformation is a key building block in automating verifi-
cation of both finite and infinite-state concurrent programs on relaxed memory models.

6 Related Work

We next discuss some additional work most closely related to ours. Over the last few
years there has been significant interest in ensuring correctness (via synthesis and ver-
ification) of concurrent programs running on relaxed memory models. Most of the re-
search has so far considered only finite-state programs [5–7, 14, 15, 17]. (Some of these

papers however, do handle specific kinds of infinite-state problems, such as unbounded
store buffers, but where all shared variables range over finite domains). Some recent
works also handle infinite-state programs [1, 2, 10, 18, 21].

One approach to handling relaxed memory models is to encode the effect of the
model directly into the program and then analyze the resulting program using tools that
work for sequential consistency (e.g., [3, 4, 10]). We follow the same general idea. The
main contribution of our work is a new abstraction and a transformation which im-
proves the precision and efficiency of the resulting program analysis. For instance, as
we showed in the paper, using the direct encoding as in [18] will result in significant loss
of precision and efficiency (i.e., failure to verify correct programs). Abdulla et al. [1]
explore online predicate abstraction for handling infinite-state verification while Dan
et al. [10] also explore predicate abstraction but this time based on offline analysis of
boolean programs. Technically, these works are quite different from ours since: (i) they
both use direct encoding and also (ii) they both use predicate abstraction which, even
with abstraction refinement, tends to require manually supplied predicates. In contrast,
we provide a new robust abstraction of the store buffers and explore the application
of numerical abstract domains that do not require manual annotations. We also pro-
vide a more comprehensive experimental study than either of aforementioned works
(we consider x86 TSO, as well as the more relaxed PSO model and a range of chal-
lenging concurrent algorithms). For the common benchmarks, [1] and our approach
achieve comparable results. A possible limitation of this work is locked writes, mean-
ing that fences are generated immediately following a write to shared memory. Our tool
is more flexible since fences can be placed at any label. We again note that the robust
buffer abstraction (RBA) proposed in this work can be immediately useful with pred-
icate abstraction as well. In the work of [21], arbitrary safety properties are not taken
into account. This work supports two fence removal optimizations (for TSO), which
are not enough to eliminate redundant fences. We applied their optimizations on a few
of our benchmarks and, unfortunately, it failed to remove redundant fences (e.g., in the
Chase WSQ algorithm).

7 Conclusion

We proposed a new approach for verifying concurrent programs on relaxed memory
models. Our approach consists of a robust abstraction of the store buffers, an encoding
of the store buffer sizes that leverages the underlying abstract domains, and a source
to source translation that encodes relaxed memory model semantics into the target pro-
gram, thereby enabling the use of existing verification tools for sequential consistency.

We implemented our approach and evaluated it on a set of finite and infinite-state
concurrent algorithms using an existing state-of-the art abstract interpretation engine.
Our experimental results demonstrate that the overall system is superior to prior work
in terms of precision and performance, enabling verification of concurrent algorithms
on both x86 TSO and PSO memory models not possible before.

References

1. ABDULLA, P. A., ATIG, M. F., CHEN, Y.-F., LEONARDSSON, C., AND REZINE, A. Au-
tomatic fence insertion in integer programs via predicate abstraction. SAS’12.

2. ALGLAVE, J., KROENING, D., NIMAL, V., AND POETZL, D. Don’t sit on the fence - a
static analysis approach to automatic fence insertion. In CAV’14.

3. ALGLAVE, J., KROENING, D., NIMAL, V., AND TAUTSCHNIG, M. Software verification
for weak memory via program transformation. ESOP’13.

4. ATIG, M. F., BOUAJJANI, A., AND PARLATO, G. Getting rid of store-buffers in tso analysis.
In CAV’11.

5. BOUAJJANI, A., DEREVENETC, E., AND MEYER, R. Checking and enforcing robustness
against tso. In ESOP’13 (2013).

6. BURCKHARDT, S., AND MUSUVATHI, M. Effective program verification for relaxed mem-
ory models. In CAV ’08 (2008).

7. BURNIM, J., SEN, K., AND STERGIOU, C. Testing concurrent programs on relaxed memory
models. In ISSTA ’11 (2011).

8. COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL’77.

9. COUSOT, P., AND HALBWACHS, N. Automatic discovery of linear restraints among vari-
ables of a program. In POPL’78 (1978).

10. DAN, A. M., MESHMAN, Y., VECHEV, M. T., AND YAHAV, E. Predicate abstraction for
relaxed memory models. In SAS’13 (2013).

11. DE MOURA, L., AND BJØRNER, N. Z3: An efficient smt solver. In TACAS’08 (2008).
12. JEANNET, B. Relational interprocedural verification of concurrent programs. Software and

System Modeling 12, 2 (2013), 285–306.
13. JEANNET, B., AND MINÉ, A. Apron: A library of numerical abstract domains for static

analysis. In CAV (2009), A. Bouajjani and O. Maler, Eds., vol. 5643, pp. 661–667.
14. KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic inference of memory fences.

In FMCAD ’10 (2010).
15. KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Partial-coherence abstractions for relaxed

memory models. PLDI ’11.
16. LAMPORT, L. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comput. 28, 9 (Sept. 1979), 690–691.
17. LINDEN, A., AND WOLPER, P. An automata-based symbolic approach for verifying pro-

grams on relaxed memory models. In SPIN (2010), pp. 212–226.
18. MESHMAN, Y., DAN, A. M., VECHEV, M. T., AND YAHAV, E. Synthesis of memory

fences via refinement propagation. In SAS’14 (2014).
19. MINÉ, A. The octagon abstract domain. Higher Order Symbol. Comput. 19, 1 (2006),

31–100.
20. RIVAL, X., AND MAUBORGNE, L. The trace partitioning abstract domain. ACM Trans.

Program. Lang. Syst. 29, 5 (2007), 26.
21. SEVCÍK, J., VAFEIADIS, V., NARDELLI, F. Z., JAGANNATHAN, S., AND SEWELL, P.

Compcerttso: A verified compiler for relaxed-memory concurrency. J. ACM 60, 3 (2013),
22.

22. SHASHA, D., AND SNIR, M. Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10, 2 (Apr. 1988), 282–312.

23. SURA, Z., FANG, X., WONG, C.-L., MIDKIFF, S. P., LEE, J., AND PADUA, D. Compiler
techniques for high performance sequentially consistent java programs. In PPoPP ’05.

